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A B S T R A C T

While interaction with computers used to be dominated by mice and keyboards, new
types of sensors now allow users to interact through touch, speech, or using their
whole body in 3d space. These new interaction modalities are often referred to as
“natural user interfaces” or “NUIs.” While 2d NUIs have experienced major success
on billions of mobile touch devices sold, 3d NUI systems have so far been unable to
deliver a mobile form factor, mainly due to their use of cameras. The fact that cameras
require a certain distance from the capture volume has prevented 3d NUI systems from
reaching the flat form factor mobile users expect.

In this dissertation, we address this issue by sensing 3d input using flat 2d sensors.
The systems we present observe the input from 3d objects as 2d imprints upon physical
contact. By sampling these imprints at very high resolutions, we obtain the objects’
textures. In some cases, a texture uniquely identifies a biometric feature, such as the
user’s fingerprint. In other cases, an imprint stems from the user’s clothing, such as
when walking on multitouch floors. By analyzing from which part of the 3d object the
2d imprint results, we reconstruct the object’s pose in 3d space.

While our main contribution is a general approach to sensing 3d input on 2d sensors
upon physical contact, we also demonstrate three applications of our approach.

(1) We present high-accuracy touch devices that allow users to reliably touch targets
that are a third of the size of those on current touch devices. We show that different
users and 3d finger poses systematically affect touch sensing, which current devices
perceive as random input noise. We introduce a model for touch that compensates for
this systematic effect by deriving the 3d finger pose and the user’s identity from each
touch imprint. We then investigate this systematic effect in detail and explore how
users conceptually touch targets. Our findings indicate that users aim by aligning visual
features of their fingers with the target. We present a visual model for touch input that
eliminates virtually all systematic effects on touch accuracy.

(2) From each touch, we identify users biometrically by analyzing their fingerprints.
Our prototype Fiberio integrates fingerprint scanning and a display into the same
flat surface, solving a long-standing problem in human-computer interaction: secure
authentication on touchscreens. Sensing 3d input and authenticating users upon touch
allows Fiberio to implement a variety of applications that traditionally require the
bulky setups of current 3d NUI systems.
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(3) To demonstrate the versatility of 3d reconstruction on larger touch surfaces, we
present a high-resolution pressure-sensitive floor that resolves the texture of objects
upon touch. Using the same principles as before, our system GravitySpace analyzes all
imprints and identifies users based on their shoe soles, detects furniture, and enables
accurate touch input using feet. By classifying all imprints, GravitySpace detects the
users’ body parts that are in contact with the floor and then reconstructs their 3d body
poses using inverse kinematics. GravitySpace thus enables a range of applications for
future 3d NUI systems based on a flat sensor, such as smart rooms in future homes.

We conclude this dissertation by projecting into the future of mobile devices. Focusing
on the mobility aspect of our work, we explore how NUI devices may one day augment
users directly in the form of implanted devices.
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Z U S A M M E N FA S S U N G

Die Interaktion mit Computern war in den letzten vierzig Jahren stark von Tastatur und
Maus geprägt. Neue Arten von Sensoren ermöglichen Computern nun, Eingaben durch
Berührungs-, Sprach- oder 3d-Gestensensoren zu erkennen. Solch neuartige Formen
der Interaktion werden häufig unter dem Begriff „natürliche Benutzungsschnittstellen“
bzw. „NUIs“ (englisch natural user interfaces) zusammengefasst. 2d-NUIs ist vor allem
auf Mobilgeräten ein Durchbruch gelungen; über eine Milliarde solcher Geräte lassen
sich durch Berührungseingaben bedienen. 3d-NUIs haben sich jedoch bisher nicht
auf mobilen Plattformen durchsetzen können, da sie Nutzereingaben vorrangig mit
Kameras aufzeichnen. Da Kameras Bilder jedoch erst ab einem gewissen Abstand
auflösen können, eignen sie sich nicht als Sensor in einer mobilen Plattform.

In dieser Arbeit lösen wir dieses Problem mit Hilfe von 2d-Sensoren, von deren
Eingaben wir 3d-Informationen rekonstruieren. Unsere Prototypen zeichnen dabei die
2d-Abdrücke der Objekte, die den Sensor berühren, mit hoher Auflösung auf. Aus
diesen Abdrücken leiten sie dann die Textur der Objekte ab. Anhand der Stelle der
Objektoberfläche, die den Sensor berührt, rekonstruieren unsere Prototypen schließlich
die 3d-Ausrichtung des jeweiligen Objektes.

Neben unserem Hauptbeitrag der 3d-Rekonstruktion stellen wir drei Anwendungen
unserer Methode vor.

(1) Wir präsentieren Geräte, die Berührungseingaben dreimal genauer als existierende
Geräte messen und damit Nutzern ermöglichen, dreimal kleinere Ziele zuverlässig mit
dem Finger auszuwählen. Wir zeigen dabei, dass sowohl die Haltung des Fingers als
auch der Benutzer selbst einen systematischen Einfluss auf die vom Sensor gemessene
Position ausübt. Da existierende Geräte weder die Haltung des Fingers noch den
Benutzer erkennen, nehmen sie solche Variationen als Eingabeungenauigkeit wahr. Wir
stellen ein Modell für Berührungseingabe vor, das diese beiden Faktoren integriert, um
damit die gemessenen Eingabepositionen zu präzisieren. Anschließend untersuchen
wir, welches mentale Modell Nutzer beim Berühren kleiner Ziele mit dem Finger
anwenden. Unsere Ergebnisse deuten auf ein visuelles Modell hin, demzufolge Benutzer
Merkmale auf der Oberfläche ihres Fingers an einem Ziel ausrichten. Bei der Analyse
von Berührungseingaben mit diesem Modell verschwinden nahezu alle zuvor von uns
beobachteten systematischen Effekte.

(2) Unsere Prototypen identifizieren Nutzer anhand der biometrischen Merkmale von
Fingerabdrücken. Unser Prototyp Fiberio integriert dabei einen Fingerabdruckscanner
und einen Bildschirm in die selbe Oberfläche und löst somit das seit Langem bestehende
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Problem der sicheren Authentifizierung auf Berührungsbildschirmen. Gemeinsam mit
der 3d-Rekonstruktion von Eingaben ermöglicht diese Fähigkeit Fiberio, eine Reihe
von Anwendungen zu implementieren, die bisher den sperrigen Aufbau aktueller
3d-NUI-Systeme voraussetzten.

(3) Um die Flexibilität unserer Methode zu zeigen, implementieren wir sie auf einem
großen, berührungsempfindlichen Fußboden, der Objekttexturen bei der Eingabe eben-
falls mit hoher Auflösung aufzeichnet. Ähnlich wie zuvor analysiert unser System
GravitySpace diese Abdrücke, um Nutzer anhand ihrer Schuhsolen zu identifizieren,
Möbelstücke auf dem Boden zu erkennen und Nutzern präzise Eingaben mittels ihrer
Schuhe zu ermöglichen. Indem GravitySpace alle Abdrücke klassifiziert, erkennt das
System die Körperteile der Benutzer, die sich in Kontakt mit dem Boden befinden. Aus
der Anordnung dieser Kontakte schließt GravitySpace dann auf die Körperhaltungen
aller Benutzer in 3d. GravitySpace hat daher das Potenzial, Anwendungen für zukünfti-
ge 3d-NUI-Systeme auf einer flachen Oberfläche zu implementieren, wie zum Beispiel
in zukünftigen intelligenten Wohnungen.

Wie schließen diese Arbeit mit einem Ausblick auf zukünftige interaktive Geräte.
Dabei konzentrieren wir uns auf den Mobilitätsaspekt aktueller Entwicklungen und
beleuchten, wie zukünftige mobile NUI-Geräte Nutzer in Form implantierter Geräte
direkt unterstützen können.
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5

I N T R O D U C T I O N

Even though screens that sense direct touch input were invented almost fifty years
ago [76], the subsequent four decades of personal computing have been characterized
by keyboards and mice. The invention of the computer mouse [39] and the introduction
of the graphical desktop only a few years later made computers usable for everybody.
Even today, the mouse is still the primary means by which people interact with their
desktop computers. This is because the entire user interface of such systems is tailored
to the use of mouse and keyboard.

While the mouse and keyboard have remained the dominant input controls without
major changes in the type of data they capture, computer output has become consid-
erably richer. The resolution of computer screens has increased constantly, powerful
graphics cards now render high-fidelity images in real-time, and high-quality audio
output further adds to an immersive user experience. The bandwidth of information
that computers now emit is immense, which allows users to consume high-quality
content in rich detail.

In contrast, mouse and keyboard continue to provide information at a limited band-
width. The mouse records relative spatial movements in two dimensions and the
keyboard senses a combination of button presses. While both input components sense
input with high certainty, the input bandwidth they offer is comparably low. This has
substantially limited the amount of information computers are able to perceive about
the user.

However, recent advances in technology have triggered a change in this asymmetry
in human-computer interaction. Computers have started to fuse large amounts of
information that they obtain from a wide variety of sensors in order to derive input
from the user, thereby considerably extending the depth of data they obtain. Such
sensors include high-resolution color cameras, 3d depth cameras, and microphones, all
of which provide data about the world around computers at high frame rates. At the
same time, computers have become powerful enough to process this information in
real-time, enabling them to “see” and “hear” users at the same level of detail as users
perceive them.
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2 introduction

Following these advances in sensing technology, new interaction modalities have
become possible. Commonly referred to as “natural user interfaces” or “NUIs” [166],
they encompass modalities that are inspired by users’ “natural” (inter)actions, such as
touch, gestures, or speech.

1.1 natural user interfaces : computers now sense rich input

Systems that implement natural user interfaces restore the balance between the band-
width of input and output. In NUIs, information passes at high bandwidth in both
directions and computers constantly capture large amounts of input data from a wealth
of sensors. While this approach to sensing input is holistic, systems need to interpret all
this data for meaningful input. This comes at the cost of obtaining less certain input
commands compared to the discrete events from keyboard and mouse.

Touch input is an example of a very successful 2d natural user interface. As shown
in Figure 1.1a, by using touch, users directly interact with content on the screen. This
integration of input and output into the same space has been adopted by over a
billion devices, often because it allows devices to assume mobile form factors. Because
touchscreens reduce the overall size of devices by replacing the controls around the
display, they are frequently used in small devices, such as phones, music players, and
watches. On such devices, touch input is essentially a pointing method for spatial
input—much like the mouse is for desktop computers. While multitouch considerably
expanded the interaction vocabulary, such as with gesture input, multiple touch
contacts are mostly still interpreted in terms of several pointing utilities.

Figure 1.1: Natural user interfaces (“NUIs”) are replacing traditional input controls,
such as mice and keyboards. Left: Touch input a very successful example of 2d NUIs
has enabled users to directly interact with the displayed content. Right: 3d NUIs allow
users to interact through gestures or using their whole body. (Left image by Han [58],
right image from LightSpace [170])



1.1 natural user interfaces: computers now sense rich input 3

With the advent of depth cameras, interaction with computers has become even more
expressive. Depth cameras sense users, their environment, and their interactions in 3d.
Whereas 2d touch provides discrete input events, other information becomes important
in 3d scenes, such as the user’s shape including the body pose, how they move, and
who they are. As shown in Figure 1.1 (right), such systems allow the user to interact
with their whole body in the space around computers [170, 67]. While 3d interaction
has a long tradition in research [63, 59], it has become mainstream with the advent of
commoditized 3d sensors and has entered users’ homes, for such uses as playing video
games [84].

However, the ability to sense users in 3d is commonly limited to stationary installations.
Figure 1.2a shows a typical example setup of cameras that are mounted to the ceiling
of a room (here LightSpace [170]). This setup affords sensing 3d data from above and
ensures a good coverage of the entire space. Fusing the data from all cameras produces
a comprehensive 3d snapshot of the scene, including moving users as well as static
objects.

camera

ŇĂƚ
mobile device

ĐĂƉƚƵƌĞ
ǀŽůƵŵĞ

a b c

Figure 1.2: (a) Systems that sense users in 3d originated in stationary installations.
Mounting cameras to the ceiling ensures a good coverage of the 3d space, including
the geometry of users as well as objects inside the room. (b) Since the camera needs to
be placed away from the capture volume, this setup requires space, which impedes
mobility. (c) To achieve mobility, devices need to adopt flat form factors, allowing them
to be portable and achieve mass adoption. (Image a from LightSpace [170], b adapted
from ShoeSense [12])

In contrast to stationary scenarios, interaction with devices today increasingly involves
mobile use. This makes the paradigms of natural user interfaces desirable in mobile
scenarios as well. Unfortunately, camera-based sensing faces a considerable challenge
in mobile scenarios as shown in Figure 1.2b. To capture 3d data using a camera, the
camera needs to observe objects of interest from a distance. The required distance,
however, makes setups involving cameras space-consuming and thus immobile.

The property that has allowed current devices to become mobile and achieve mass
adoption in the first place is their form factor: Because mobile devices are flat, users
can easily carry them around, put them in their pockets, and retrieve them for mobile
use as shown in Figure 1.2c.



4 introduction

Therefore, to allow mass available devices to implement 3d natural user interfaces,
mobile devices must be enabled to sense the types of data that have traditionally been
available only in stationary systems.

In this dissertation, we address this issue by sensing 3d input using a flat 2d sensor,
which provides mobile devices with the ability to implement 3d NUIs. While such
devices typically sense input in the form of 2d touch contacts, our approach allows
devices to reconstruct 3d information from the input they observe.

1.2 3d from 2d touch: 3d natural user interfaces on flat devices

Our approach to obtaining the type of information required for natural user interfaces
is to augment touch sensing, which is the dominant input sensor on current mobile
devices. We thereby advance touch input from a 2d pointing modality to a 3d input
method, which provides more information upon input. We propose touch devices
that capture the 2d imprints that all objects leave on the sensor during physical contact.
By using touch-surface materials that reveal relevant features and by increasing the
resolution of the sensor itself, our devices capture all imprints with 10–100 times higher
detail than traditional devices.

By observing touch contacts at that level of detail, our touch devices sense not only
the location of touch contacts, but they also resolve the texture of the objects that are in
contact. Analyzing this texture allows our prototypes to extract additional information
from all touches on the surface.

In the case of touch devices that are operated using fingers, the texture of a touch
contact represents the user’s fingerprint. Since a fingerprint is a biometric feature, we
use it to uniquely identify the finger and thus the user who has touched the device.
In other cases, touch imprints stem from other objects, such as on multitouch floors
where imprints result from users’ clothing or the footprint of furniture. Because the
texture of such objects is not unique, the imprint we observe offers less discriminative
power, but still allows classifying the object.

We finally obtain each object’s pose in 3d space. By analyzing from which part of the
3d object the 2d imprint results, we reconstruct the 3d orientation of the object that
must have caused the particular imprint.

Our approach to sensing 3d input relies on physical contact between 3d objects and
2d touch surfaces. While this limits the extent to which we can sense 3d information
above the surface, physical contact happens as part of regular input on touch devices,
which enables our approach. On much larger scales, such as in the case of multitouch
floors, we use per-pixel pressure sensing that we incorporate into the floor to observe
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touch contacts. Here, physical contact is facilitated by gravity, which causes all people
and objects to leave imprints on the floor.

Our general approach to reconstructing 3d information from 2d touch contacts enables
3d input on flat 2d sensors. We demonstrate three applications of our approach:

1. High-accuracy touch input: We present devices that make touch input highly accurate
for users. Compared to existing touch devices, our prototypes infer touch with three
times higher accuracy. They achieve this by calibrating touch input on a per-user and a
per-finger-pose level. We show that current devices are subject to sensing a systematic
input error, because they are oblivious to the user’s identity and the orientation of the
user’s finger upon touch. Our devices compensate for this error by reconstructing 3d

input from all 2d touch contacts, which allows them to sense touch accurately.

In a series of user studies, we examine this systematic effect in detail. We investigate
how participants “conceptually” acquire small targets using touch input. From our
results, we derive a new model for touch input that predicts input locations based on
visual features. This is a departure from current devices, which measure the contact area
between the user’s finger and the surface to obtain input locations. In a final evaluation,
we show that our new model is unaffected by the systematic error that current devices
observe and that it requires no user-specific or finger-pose-specific calibration to infer
touch accurately. This suggests that our model is a good approximation of how users
conceptualize touch input.

2. Biometric user identification on touchscreens: As part of our approach, our touch
prototypes implicitly identify users during touch based on the biometric features of
their fingerprints. Unlike existing devices, our prototype Fiberio accomplishes this on
a touchscreen, thereby integrating fingerprint scanning and displaying output into the
same surface. In addition, Fiberio also reconstructs the user’s 3d finger pose from all
2d touch contacts. Knowledge of the user’s identity and the 3d pose enables a range of
new applications, such as user interface personalization and sensing high-degree-of
freedom input—applications that have traditionally only been achieved using the bulky
setups of current natural user interaction systems.

3. Reconstructing 3d input on much touch larger surfaces: We generalize our concepts of
reconstructing 3d information from 2d touch contacts to larger scales. By implementing
these techniques on a large floor that senses touch in the form of per-pixel pressure,
we demonstrate how to identify users, detect passive objects, such as furniture, and
reconstruct users’ 3d poses in a smart room solely based on the touch contacts all
objects leave on the floor. To accomplish this, we again analyze the texture of all touch
contacts. In the case of the floor, the texture represents users’ shoe soles, the structure
of their clothing, and the pattern of imprints that passive objects cause when in contact
with the floor. Since the user’s body leaves multiple contacts on the floor at a time, such
as when standing, sitting, or kneeling, we classify all touch contacts and use inverse
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kinematics to reconstruct users’ entire 3d poses. This combination is of particular
interest, as it allows us to build smart rooms entirely based on touch sensing.

1.3 contributions and structure

The main contribution of this dissertation is a general approach to providing flat devices
with the ability to sense 3d input upon touch by reconstructing this information from
the 2d contacts. Below, we preview the details of our approach as part of three
applications it enables and outline the structure of this dissertation: (1) high-accuracy
touch input, (2) biometric user identification on touchscreens, and (3) extending our
approach to a room-size touch floor to enable 3d interaction solely based on 2d input.

To put our contributions in the context of related systems, we survey the work from
the literature in Chapter 2, which is relevant to the touch devices and concepts we
introduce in this dissertation.

1.3.1 High-Accuracy Touch: a 3d Input Operation Sensed in 2d

One benefit of our approach on touch devices is that it enables them to sense touch
input with very high accuracy. Traditionally, touch input is believed to be inaccurate
for very small targets on touchscreens, such as buttons that measure only a few pixels.
In Chapter 3, we challenge this belief and systematically investigate the factors that
cause devices to observe inaccurate touch input. We find that the current models for
detecting input locations and their implementations are oversimplified: They consider
touch in 2d and derive input locations from the center of the contact area between
the user’s finger and the device (Figure 1.3). The user’s finger, however, lives in the
3d space around the device. Our results indicate that the input inaccuracy of current
devices is the effect of an incorrect mapping between the 3d of the user’s finger to the
2d of the screen.

Figure 1.3: Touch is a 3d operation. To
acquire the target, the user maps the 2d

of the target to the 3d of their finger.
To record the touch location, the device
maps the 3d of the finger to the 2d space
of the screen, typically by sensing the
contact area between finger and screen. ƚarŐeƚ

coŶƚacƚ
area

2D
ƚŽƵĐŚƐĐƌĞĞŶ

3D
ƵƐĞƌ͛Ɛ�ĮŶŐĞƌ

As illustrated by Figure 1.4a, we show that deriving input locations from the center of
the contact area causes current devices to record touch locations with systematic error
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offsets. The spatial arrangement of these error offsets depends on how the user holds the
finger in 3d and who the user is. Within each condition, the spread of measured input
locations is comparably small as indicated by the small cluster ovals in Figure 1.4a.
That is, for a particular finger orientation, a touch device observes a comparably small
input error, indicating that users can indeed acquire targets with high accuracy using
touch. However, current devices lack the notion of 3d touch and do not include the
additional degrees of the user’s finger orientation into calculating input locations. This
causes these devices to observe this systematic effect as a random input error. At the
same time, this limits the precision of touch input to the aggregate of all systematically
offset clusters (dashed oval in Figure 1.4a).

We address this by introducing the generalized perceived input point model to derive touch
locations. Our model calibrates touch input on a per-user and per-finger-posture level
and compensates for the systematic error offsets current devices observe. This reduces
the input error perceived by devices to the spread of the small clusters, as devices can
compensate for each of their systematic offsets. In a final evaluation, we demonstrate
that our model infers touch-input locations with three times higher accuracy compared
to the implementation of existing devices.

a b c

Figure 1.4: (a) Current touch devices infer input locations from the center of the 2d

contact area between the user’s finger and the input surface. However, this causes
them to record locations that are systematically offset from the target depending on the
user’s finger pose (illustrated by the small ovals). We introduce the generalized perceived
input point model, which models touch input on a per-user and per-finger-posture
level to compensate for these offsets. (b) Our Ridgepad prototype is a high-precision
touch-input device based on a fingerprint scanner. (c) Ridgepad implements our new
model by identifying the user upon touch based on their fingerprint, and reconstructs
the user’s 3d finger posture to make 2d touch more accurate.

Based on these insights, we present Ridgepad in Chapter 3.4, a high-precision touch-
input device (Figure 1.4b). Ridgepad is based on a regular off-the-shelf fingerprint
scanner. In addition to recording touch contacts, it also resolves their texture in the
form of users’ fingerprints. As shown in Figure 1.4c, Ridgepad determines who the
user is and how they hold their finger in 3d by comparing the observed fingerprint
with pre-recorded images in a fingerprint database, each of which is associated with
a known user’s name and a 3d finger pose. Depending on the recognized user and
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3d pose, Ridgepad applies corrective 2d offsets to make touch input more accurate. In
an evaluation, we find that using this approach, Ridgepad improves the accuracy of
sensing input by a factor of two, allowing users to reliably touch targets as small as
7.8 mm in diameter. To evaluate the potential of our approach, we compared Ridgepad
to a prototype based on sub-millimeter 3d optical tracking, which achieved even
3.3 times higher accuracy, enabling reliable targets to measure only 4.3 mm.

The fact that Ridgepad is able to achieve this substantial increase in touch-input
accuracy suggests that the implementation of current touchpads is incomplete. In
particular, current devices appear to neglect something that is contained in the user’s
3d finger posture, i.e., something that is required to infer accurate touch.

In Chapter 4, we investigate the origins of the effect we observed in Chapter 3 and
explore users’ conceptual understandings of acquiring small targets using touch input.
We conduct a series of controlled experiments from which we develop a new model
that describes how users touch a target: the projected center model (Figure 1.5). In this
model, users place certain visual features located on the top of their fingers directly
above a target (e. g., the center of the fingernail). This is a departure from the model
underlying the design of all current touch devices, which sense input locations as the
center of the 2d touch contact, i. e., based on features located at the bottom of the users’
fingers. The parallax between top and bottom of users’ fingers therefore explains the
input error current touch devices observe and Ridgepad’s substantial accuracy boost.

45°

15°

-15° 0° 15° 45° 90° ƉƌŽũĞĐƚĞĚ�ĐĞŶƚĞƌ�ŵŽĚĞů

ŚŽƌŝǌŽŶƚĂů�ĐĞŶƚĞƌ�ŽĨ
ƚŚĞ�ĨŝŶŐĞƌ�ŽƵƚůŝŶĞ

ǀĞƌƚŝĐĂů�ŵŝĚĚůĞ�ŽĨ
ƚŚĞ�ĨŝŶŐĞƌŶĂŝů

pitch

roll

Figure 1.5: A 3d model of touch input based on visual features. Left: A study participant
targeting crosshairs using different finger angles. To acquire the target, our findings
suggest that users align visual features of their fingers with the target in a hypothesized
top-down perspective. Right: We conducted a series of user studies to create and
evaluate participants’ mental models of touch input. The projected center model thereby
predicted input locations with the lowest error across all participants and 3d finger
postures, suggesting that this is a good description of how users conceptually acquire
targets. It says that users target by placing the horizontal center of their finger outline
and the vertical center of their fingernail over the target.

Our exploration of users’ conceptual models of touch input in Chapter 4 confirms our
previous results, which demonstrates that touch needs to be considered in all 3d to
serve as an accurate input modality. To realize this finding in practice, touch devices
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need to sense the top of the user’s finger, for example by using an overhead camera. In
Chapter 4.10, we demonstrate such an implementation. Our prototype detects touch
input on the user’s body using a 3d depth camera and implements a visual model to
determine input based on features of the user’s finger.

However, as mentioned earlier, cameras add volume to the setup, thereby preventing
the desirable flat form factor of devices. To achieve this form factor and still interpret
touch input in 3d, devices need to reconstruct the 3d finger pose from the observed 2d

contacts. This will enable them to sense touch with much higher accuracy while at the
same time maintaining their current input modality.

1.3.2 Biometric Identification and 3d From 2d Reconstruction on a Touchscreen

As part of making touch input more precise, Ridgepad obtains the user’s fingerprint
from each touch contact. Based on that, it identifies the user and implicitly reconstructs
the user’s 3d finger pose.

However, interactive devices offer touchscreens. Ridgepad is input only and displaying
output cannot be added to a fingerprint scanner.

In Chapter 5, we introduce Fiberio, an interactive touchscreen that senses fingerprints.
Similar to Ridgepad, Fiberio extracts the texture of objects from all touch contacts.
At the same time, Fiberio displays images as shown in Figure 1.6. To exploit user
identification as a feature, we built Fiberio as a 15.8′′×10

′′ multitouch table—a form
factor large enough for use by two to three simultaneous users.

a b c

Figure 1.6: Fiberio is a rear-projected tabletop system that captures users’ fingerprints
during touch. (a) Fiberio is displaying a region of its high-resolution raw input image,
revealing the fingerprint of the finger. The key that allows Fiberio to display an
image and sense fingerprints at the same time is its screen material: a fiber optic plate.
(b) Building on Ridgepad’s approach, Fiberio reconstructs the user’s finger posture in
3d. Here, Fiberio shows a 3d hand that mirrors the 3d finger pose reconstructed from
the observed touch image. (c) Fiberio’s ability to identify users during touch interaction
allows it to support a wide range of applications that require secure authentication
(here approving invoices in a bank scenario).



10 introduction

Similar to Ridgepad, Fiberio captures users’ fingerprints during each touch. This
allows Fiberio to implement user identification and 3d finger pose reconstruction on
an interactive touchscreen. Figure 1.6b shows the results of the reconstructed 3d finger
pose. Fiberio displays a 3d hand model that mirrors the motion and rotation of the
user’s finger pose solely based on the observed touch image.

As a side effect, Fiberio addresses a long-standing challenge in human-computer
interaction: fine-grained unobtrusive user authentication on touchscreens as shown in
Figure 1.6c. Compared to token-based systems, such as access cards, fingerprint-based
authentication provides users with more flexible and secure access control [93].

The main contribution of Fiberio is its ability to display images and sense fingerprints
in the same location. While Fiberio’s setup is similar to a regular diffused illumination
table, the key difference is the type of surface material we use: a fiber optic plate that
simultaneously provides the properties needed for a projection surface as well as an
input surface for scanning fingerprints. The plate consists of 40 million individual
fibers and has a resolution of over 4200 dpi. On the one hand, the fiber optic plate
diffuses incoming light into all directions, which allows Fiberio to use it as a projection
screen. On the other hand, the fiber optic plate provides specular reflection, a property
needed to capture high-quality fingerprints. In addition, Fiberio provides the same
functionality as traditional diffused illumination tabletop systems in that it senses
touch, detects fiducial markers, and estimates users’ locations around the table.

1.3.3 Extending the Same Principles to Room-Size Form Factors

Having demonstrated 3d reconstruction from 2d touch on touch devices designed for
finger input, we generalize our approach to larger touch surfaces in Chapter 6. We
present a multitouch floor that senses touch in the form of per-pixel pressure inside a
room. Since gravity forces all objects to the ground, our floor captures the imprints
caused by users as they walk or sit, as well as those caused by passive objects, such
as furniture. Sensing the pressure of imprints at such a resolution thereby reveals the
texture of touching objects, such as users’ shoe soles, their clothing, or the footprint of
passive objects. While this input is very different from the input sensed by traditional
touchscreens, we demonstrate that the touch textures extracted from the imprints left on
the floor are characteristic and carry enough information to identify users, reconstruct
users’ 3d postures, and enable high-precision touch input using shoes—similar to how
we processed users’ fingerprints in previous chapters.

We first present Multitoe, a hardware setup that senses multitouch pressure input on a
floor. To prototype our approach, we build a table-size installation for foot interaction.
Maintaining the same concept, we later present an 8 m2 floor installation that can
accommodate multiple users and objects at the same time as shown in Figure 1.7d.
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Figure 1.7: We generalize our previous concepts to large multitouch floors. (a) Users
interact using their feet on such floors, here to enter text on a touch-sensitive keyboard.
(b) Our installation Multitoe is a rear-projected floor that detects touch input by sensing
per-pixel pressure. (c) The touch image the system obtains from (a). (d) By identifying
users based on the shoe soles and classifying all touch contacts, our system GravitySpace
recognizes people and objects, and reconstructs activity in a whole room solely based
on the pressure imprints they leave on the floor. Here, GravitySpace displays the
mirrored model of its understanding of the 3d space above the floor, including users
and their 3d poses, as well as passive furniture.

We then transfer the concept of direct touch interaction known from mobile devices
and tabletop systems to our multitouch floor. We thereby revisit the concepts of user
identification and precise touch input that we describe in earlier chapters and explore
what they mean for input using feet (Figure 1.7a). Similar to a user’s finger, the user’s
shoe leaves characteristic imprints: the structure of the shoe sole. We use this to identify
users and, using the same principles as on Ridgepad, allow them to reliably touch very
small targets using their feet.

Building on the concepts we presented in terms of touch devices, our system Gravi-
tySpace extends 3d reconstruction from 2d touch to a more general reconstruction of
the things happening on the floor surface. As shown in Figure 1.7d, we generalize our
approach from analyzing the shoes of a standing user to reconstructing the whole 3d

pose of each user, such as sitting or kneeling. GravitySpace first classifies touch contacts
into body parts and determines to which user they belong. If possible, GravitySpace
then infers the location of joints above the floor from the touches that are in contact
with the floor using inverse kinematics, such as the user’s center of gravity when
standing, or the knees when sitting.

This also allows users to interact above the floor with virtual objects that are shown on
the floor, as GravitySpace estimates the location of a user’s foot in the air based on
the shifting pressure distribution in the foot that remains on the ground. To extend
capturing input to passive objects that rest on the floor, we created specialized furniture
that contains vertical bundles of drinking straws. These straws propagate pressure to
the floor, allowing GravitySpace to reconstruct users’ poses even when they are sitting
on the furniture.
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1.3.4 Conclusions and Next Steps: from Flat Devices to Ultra-Mobile Devices

Chapter 7 concludes the main part of this dissertation. We summarize the contributions
of 3d from 2d reconstruction that we make in each chapter and revisit 3d natural user
interfaces on flat 2d form factors, both in mobile settings and in room-size installations.

In Chapter 8, we project into the future of interactive devices. While we propose flat
devices that allow for “natural” interaction in the main part of this dissertation, in
future work we plan on investigating the capabilities and meaning of devices as their
form factor continues to shrink. This miniaturization will allow devices to continue
to blend into users’ environments in the form of ultra-mobile devices. As a first step
in this direction, we investigate one manifestation of future ultra-small technology:
devices that are implanted under the user’s skin. Mainly for medical purposes, millions
of people carry implanted devices, such as pacemakers and hearing aids. However,
such devices support only limited interaction. We present an early investigation of
their capabilities in terms of input, output, wireless communication, and charging.
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The touch devices and processing concepts we introduce in this dissertation are related
to materials and setups used in optical touch sensing and algorithms to detect touch-
input locations. We also outline related work on touch accuracy and modeling touch
input, as well as the importance of finger orientations during touch. Also relevant are
systems that identify users and their applications in interactive systems. We particularly
examine systems that involve fingerprint scanning, as well as the use of glass fibers to
implement such scanners and their use in human-computer interaction. Finally, our
work on interactive floors is related to systems that provide foot-based interaction or
provide indoor tracking.

2.1 technologies and systems that sense touch input

A wide range of touch sensing technologies have been presented in the related
work [140]. While resistive and capacitive solutions to touch sensing are commonly
used in commercial products, optical sensing has been explored broadly in the human-
computer interaction community.

2.1.1 Resistive and Capacitive Touchscreens

For a long time, manufacturers have incorporated resistive touchscreens into devices
because of economical costs. Such resistive sensors comprise two layers of transparent
conductors on top of the surface of the screen [36]. A thin spacer separates both layers.
When touching the screen, the user’s finger presses both layers together, causing them
to establish contact. To sense the touch location, the device applies a voltage to one
conductor in one direction and measures the voltage at the other conductor in the
orthogonal direction. The contact established between the two conductor functions
as a voltage divider, such that the voltage measured at the second conductor yields
one coordinate of the 2d touch position. For the second coordinate, the device applies
a voltage to the second conductor and measures the resulting voltage from the first.

13
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This resistive approach to touch sensing is limited to detecting actual contact; it cannot
sense objects that hover closely above the surface.

Most mobile touch devices today use capacitive sensing to detect touch input [125, 13],
such as smartphones and tablets. Such (projected) capacitive sensors consist of a set
of drive lines and orthogonally arranged sense lines, typically made from indium tin
oxide. Since this material is transparent, it can be placed on top of the screen without
interfering with screen output. When a user touches the surface, the charge of the
user’s finger affects the capacitance between drive and sensing lines, which impacts the
charge measured at the sense lines. Therefore, capacitive sensors observe the presence
of the user’s finger; while the observable electric charge abates rather abruptly as
the finger moves away from the surface, capacitive sensors are capable of detecting
hovering fingers to a limited extent.

Capacitive touch sensors tend to be more reliable and durable than resistive sensors.
Since electric charge passes through glass, the user’s finger need not be in direct
contact with capacitive sensors. Current devices typically cover the sensor using a
protective transparent surface, such as tempered glass. As an example, DiamondTouch
is a capacitive multitouch tabletop that is designed for extreme durability [34]. While
its surface is opaque and it uses top projection to display output, DiamondTouch
incorporates a fiber-glass laminate as the insulating layer above the sensing layer, which
protects the sensor and makes the system robust.

2.1.2 Optical Touchscreens

Systems based on optical sensing typically use cameras to capture touch input. Al-
though this imposes a certain space requirement, such systems are easy to set up and
scale to large dimensions. The latter fact particularly made optical solutions attractive
for research on tabletop systems in human-computer interaction.

Diffused Illumination

Systems based on Diffused Illumination implement a simple method for detecting touch
input using a light source, a camera, and a diffuser. Examples include Holowall [96]
or the Microsoft Surface table [99]. Camera and illuminant are arranged behind the
diffusing layer, such that the diffuser scatters all the light from the illuminant towards
the objects behind the diffuser. The camera observes the light that is reflected by the
user’s hands, fingers or other objects. As fingers and objects move away from the
diffuser, the diffuser blurs the reflected light more strongly until such objects become
unrecognizable in the camera image [16]. If in contact with the diffuser, the blur is
weak enough for the camera to resolve fingers and objects, such as fiducial markers.
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Despite the blur, diffused illumination allows the camera to resolve objects behind the
diffuser to some extent. Systems may leverage this, for example, to sense hovering
hands and fingers. On the downside, this fact aggravates detecting the precise moment
and location of touch contacts in the camera image; while they appear “less blurry,”
they do not exhibit a distinct property that determines the part of the finger that is in
direct contact with the surface [140].

Diffused illumination is easily integrated with touchscreens. In addition to enabling
touch detection, the diffuser simultaneously serves the purpose of producing output
in such systems. Often using projectors that are also positioned behind the diffuser
(rear-projection), the diffuser scatters the light from the projector and allows output
images to emerge on the surface.

Frustrated Total Internal Reflection

Sensing Frustrated Total Internal Reflection (FTIR) to detect touch events allows systems
to easily detect the precise moment and area of touch contacts [58]. Such systems also
use cameras to detect touches, but inject light laterally into a waveguide, such as a sheet
of acrylic. As the light spreads, it is confined within the waveguide, because the optical
density of acrylic is higher than the optical density of the air around it. This causes
the light to be fully reflected at the top and bottom surface of the waveguide. When a
user’s finger touches the waveguide, however, the reflections inside the waveguide are
frustrated, causing the light to escape the waveguide. This illuminates the contact area
of the finger, which the camera observes. The camera therefore produces an image in
which only the touch contacts are brightly illuminated.

Because of this property, processing touch input using FTIR is comparably easy. Fingers
only light up when they are in direct contact and only the contact area between fingers
and the surface is illuminated. Such touch systems therefore detect both the moment
as well as the location (i. e., area) of touch input precisely.

When used as part of a touchscreen, the diffuser typically is what allows the projection
to image. However, the diffuser at the same time prevents the camera to see past the
touch surface. Since all illumination is confined within the waveguide, hovering objects
or fiducial markers remain invisible to the camera, because they receive no light from
the illuminant.

Overcoming the Diffuser

Due to the nature of the diffuser, the camera in the setups mentioned above resolves
fingers or objects only if they are touching or within a small distance to the surface.
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To see past the diffuser, touch systems have switched to a range of different surface
materials instead.

TouchLight, for example, uses a holoscreen as the touch surface [167]. The holoscreen
diffuses light only from a particular direction, while letting light from other directions
pass. Arranging projector, camera, and illuminant accordingly allows the projection
to image on the surface while the camera can still see through it. SecondLight uses
a switchable diffuser to accomplish the same effect [73]. The screen thereby switches
between clear and diffuse many times a second and is synchronized with the camera
and a shutter in front of the projector. When the screen is diffuse, the shutter is open
and allows the light from the projector to pass and image on the screen; when the
screen is clear, the shutters block the projector light and the camera captures an image
through the now transparent screen.

ThinSight forgoes the diffuser completely and integrates touch sensing into the flat
screen of a laptop [65]. ThinSight features an array of infrared light emitters and sensors
that is mounted behind the LCD panel of the screen. Similar to diffused illumination,
the system senses touch by capturing the reflections from the user’s hands and fingers.
While the sensing resolution is limited, ThinSight demonstrates how to incorporate
optical touch sensing into flat devices.

Top-Down Touch Detection

As an alternative to sensing from behind the surface, some systems have sensed touch
input top-down on the surface using a camera. While this approach requires no
space behind the touch surface and imposes little requirements onto the surface, it
cannot detect touch by observing contact between the user’s finger and the surface.
Touch-input locations thus need to be determined using features that are visible from
above.

The Digital Desk, for example, tracks the location of a user’s finger with a camera above
the desk and detects touch events using a microphone [164]. The Visual Touchpad also
detects touch locations based on visual features and uses two cameras, each mounted
at a different oblique angle, to detect touch events on the surface [92]. Agarwal et al.
mounted stereo cameras above the user’s hands and trained a classifier to recognize
fingertips and detect touching fingers as well as fingers hovering above the surface [2].
PlayAnywhere observes fingers from above with a camera mounted at an angle and
an illuminant [168]. The system detects touch input on the table when user’s fingers
approach the shadows they cast. Wilson uses a depth-sensing camera to detect touch
locations when the user’s finger is close enough to another surface [169]. LucidTouch
combines a touchpad mounted to the back of the device with a camera that records the
user’s fingers [165]. While the touchpad senses touch events, the camera determines
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input locations and the device displays them along with the fingers to the user on the
screen.

2.2 touch-input accuracy

Touch devices infer the location of input events depending on their sensing modality;
while contact-based technologies observe the contact area, camera-based solutions use
visual features to determine input locations.

2.2.1 Modeling Touch Input

To operate a user interface, devices need to map touch-input events to screen coordi-
nates. In doing this, devices implement a certain model that describes the transformation
of the sensed data to a 2d coordinate pair.

Modeling cursor-based target acquisition has a long tradition in human-computer
interaction. Fitts’ Law models the targeting time for one-dimensional targets [43].
Grossman and Balakrishnan model pointing as the probabilistic process of acquiring
a two-dimensional target under visual control [53]. Both models assume that users
can see both the target location as well as the input pointer. This requirement is not
fulfilled by touch on targets that are small enough to be occluded by the user’s finger,
however.

On touch devices, the model that is implemented by a wide range of technologies
determines input coordinates from the the observed contact area, which it reduces to a
single point, such as the center of gravity [19]. This reduction is necessary to process
input locations in the 2d coordinates of the user interface [160]. Examples include touch
devices based on capacitive sensing [125] and FTIR [58].

In contrast to processing 2d touch coordinates, researchers have proposed considering
the entire contact area as input. Sliding Widgets, for example, are user interface
elements that respond when the contact area touches them [103]. A single touch can
thus affect several elements at once. Shapetouch interprets the size of the contact area
in terms of the force a touch event represents [26]; while touching an object with the
entire palm holds the object in place, a slide with the side of the hand pushes multiple
objects aside at the same time.

While touch input works sufficiently well for large user interface targets, it becomes
imprecise as an input modality to select very small targets. The common explanation
for this inaccuracy is the fat finger problem [157, 142]. This problem comprises two
aspects. (1) The soft skin of the fingertip prevents users to use their finger as a precise
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pointing tool and causes devices to sense input locations anywhere within the contact
area between the user’s finger and the device. (2) Since users occlude targets during
touch with their finger, thereby introducing additional imprecision [15], this prevents
the target from providing visual feedback so that users cannot compensate for the
randomness.

Researchers have therefore studied the factors of this problem in order to make touch
input more precise.

2.2.2 Touch Precision and the Role of Finger Posture

Several researches suggested that the angle between the user’s finger and the device
might impact touch precision. Observing participants that touched targets on interac-
tive tabletops, Forlines et al. noticed that participants’ finger pitch changes depending
on the location of the target, which at the same time impacted the size of the contact
area between the finger and the tabletop surface. As participants touched targets that
were farther away from the edge of the table, they held their fingers at a flatter angle,
leading to an increased contact area. Since the device used by Forlines et al. inferred
touch locations from the centroid of the contact area, this caused the sensed input
location to be detected farther from the actual target.

Wang and Ren examined the impact of individual fingers, specific finger postures and
gestures on input accuracy and contact area [160]. Their results showed significant
differences in how precisely participants were able to touch depending on these factors,
which exposed the problem with detecting input from the center of the contact area.
Wang and Ren used their results to inform the design of user-interface elements.

2.2.3 Minimum Target Sizes of User Interface Elements

As a result of touch inaccuracy, it is commonly understood that a touch target requires
a certain minimum size, such that users are able to reliably acquire it. While larger
targets are one way of addressing this issue, this either limits the number of targets
shown at a time or requires larger screens. The latter is especially problematic on
mobile devices, where screen space is scarce [15].

In terms of the minimum button sizes for reliable targets, studies in the related work
report different values. For example, Hall et al. report a size of 26 mm [56], Wang and
Ren find 11.5 mm buttons to be reliable [160], and Vogel and Baudisch obtain 10.5 mm
as a reliable button size [157]. All three studies thereby used different touch-sensing
technologies.
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As a commercial example, Apple advices developers that the “comfortable minimum
size of a tappable UI element” is 44×44 pixels in the iOS Human Interface Guidelines [7].
Depending on the pixel density of the device, 44 pixels correspond to 6.85 mm on an
iPhone 5 or 8.47 mm on an iPad.

In the light of the results presented in this dissertation, it seems plausible that the
disagreement about minimum button sizes is caused by differences in study conditions.
Vogel and Baudisch varied finger pitch between the two levels “fingertip” and “nail.”
In the study conducted by Wang and Ren, it was part of a gesture that combines finger
pitch with yaw [160].

Wang and Ren also distinguished individual fingers, while other authors did not.
They also recalibrated x/y offsets for every participant, thereby effectively using per-
user calibration [Feng Wang, personal communication, 10/03/09]. Finally, there are
differences in how users commit a selection, such as by take-off [120, 160] or a button
press with the other hand [15].

2.3 improving touch accuracy

Touch devices have improved touch-input accuracy using two complementary ap-
proaches. On the one hand, the use of explicit targeting aids has allowed users to be
more accurate, albeit at the cost of decreased input speed or less direct touch. On
the other hand, some systems aim at improving touch accuracy implicitly, such as by
correcting for a bias in sensing input.

2.3.1 Targeting Aids That Are Part of the User Interface

A popular approach to circumvent the requirement of a minimum button size is to
address the occlusion problem using targeting aids.

Zooming-based techniques reduce occlusion simply by temporarily magnifying screen
contents (e. g., [4], TapTap [134], Dual Finger Stretch [19]). While zooming facilitates
acquiring small targets with higher precision, this approach cannot fully resolve
occlusion issues and in addition reduces users’ input speed.

Other targeting aids remove occlusion entirely by separating the user’s hand from the
pointer. While Offset Cursor shows a selection tool above the user’s finger to allow
for precise acquisition [120], Shift shows the area under the finger in a callout above
the finger [157]. Alternatively, switching touch input to a touchpad on the back of the
device [15] removes occlusion and allows users to see where they are touching, as does
using a stylus in place of the finger [127].
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In contrast to direct touch input, researchers have proposed on-screen elements for
precise target selection on touchscreens. Examples include on-screen widgets, such as
Cross-Lever and Precision Handle [4] or a mouse cursor operated by both hands (e. g.,
Dual Finger Midpoint [19]).

On the flipside, targeting aids make touch less direct and may therefore reduce the
intuitiveness of input. They also increase targeting time; Offset Cursor, for example,
incurs a task time penalty of 250 ms to 1000 ms [120].

2.3.2 Applying Corrective Adjustments

To replace targeting aids, researchers have explored options to make touch more precise
by applying corrective adjustments to compensate for error offsets. Forlines et al. linked
these error offsets to the changes in contact area depending on finger pitch, but did not
compensate for this effect [45].

Vogel and Baudisch explained the existence of error offsets as the “perceived input
point problem” [157]. When a user tries to acquire a target using their fingertip, the
touch device records the contact area, but the center of this area tends to be located
“below” the target. Vogel and Baudisch compensate for this effect by applying a
constant inverse offset when recognizing touch. Apple’s iPhone implements a similar
approach and applies a corrective global offset upwards [75].

As we demonstrate in this dissertation, the sensed error offset not just depends on
finger pitch, but on the finger’s orientation in all three dimensions as well as who
the user is. Since detecting these factors allows devices to make touch very accurate,
systems that detect the posture of the user’s finger are relevant to our work.

2.4 sensing finger orientations and applications involving them

Different types of touch technologies are able to extract different subsets of the 3d

finger posture. The Microsoft Surface table, for example, detects the yaw rotation
of the user’s finger by analyzing the diffuse reflections of the hovering hand [99].
Capacitive technologies, such as the FingerWorks iGesture pad [42], estimate the yaw
orientation of the finger based on the eccentricity of the contact area. AnglePose
additionally estimates finger pitch by analyzing the limited range of hover capacitive
sensors detect [130].

Some researchers have proposed exploiting finger postures in order to enable additional
functionality. Wang and Ren, for example, proposed pie menus that remain free of
occlusion by the user’s hand by sensing the user’s finger orientation [160]. The same
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authors later also demonstrated hand orientation-aware gesture processing [159]. The
proposed algorithm thereby detects finger yaw by observing the changes in contact
area over time.

Finger roll has been proposed as the basis for a new gesture language (e. g., Micro-
Rolls [135]). The specific implementation of MicroRolls, however, classifies the motion
of input samples to detect rolling and dragging; it cannot distinguish between simulta-
neous finger rolling and finger dragging and has no notion of the difference between
the three rotation angles. Therefore, rolling serves primarily as an alternative way of
performing a drag gesture. In contrast, the Ridgepad prototype we introduce in this
dissertation distinguishes rolling from dragging, even from a single interaction.

In touch systems that detect input using cameras, determining finger orientation
becomes comparably easy, because the camera is able to observe the user’s entire
hand. The Visual Touchpad detects finger yaw using two cameras above the touch
surface [92]. LucidTouch detects the user’s hands and overlays those parts that are
behind the device on the touchscreen [165].

2.5 user identification on touch devices

As we show in this dissertation, identifying the user upon touch not only serves
our purpose of making touch input more precise, we also use it to enable devices to
offer new functionality for personalized use. While the devices we propose implicitly
identify users based on the touch contacts themselves, a number of systems in the
related work have explored a wide variety of alternatives to user identification. The
majority of touch technologies, however, is ignorant of who touches, such as standard
setups using Diffused Illumination [96], FTIR [58], or capacitive sensing [125].

Four general approaches to identifying users on or around touch devices have formed in
the related work, listed in the order of increasing reliability: (1) systems that distinguish
simultaneously interacting users without obtaining their identity, (2) knowledge-based
and appearance-based identification, (3) token-based identification through user-carried
objects, and (4) secure user identification.

2.5.1 Systems That Distinguish Users

A series of multitouch tabletop systems are able to distinguish users that simultaneously
interact with the table. For example, DiamondTouch electrically connects users’ chairs
to the surface of the tabletop [34]. When a user touches the surface, their body closes
the circuit between tabletop and chair. This enables DiamondTouch to trace each touch
to a chair and distinguish users reliably. While this approach is robust, the number of
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simultaneous users is limited by the number of seats and DiamondTouch also requires
users to remain stationary during interaction.

Other systems have associated touch events with users around the table by tracing
their arm to the edge of the table using the reflections of the user’s arm above the
tabletop [176, 129]. Wang, Cao, et al. estimate the location of a user from the orientation
of a touch contact and at the same time use this to distinguish users [159]. Walther-
Franks et al. instrument a tabletop with a series of proximity sensors to obtain users’
locations around the tabletop [158]. Medusa extends this setup and adds proximity
sensors that face up [6]. These sensors additionally capture users’ arms, such that
Medusa can distinguish simultaneous users and associate touch events with them.

Note that while the previous systems reliably distinguish users, they do not obtain
users’ identities.

2.5.2 Knowledge-Based and Appearance-Based User Identification

A common approach to reliably identify a user from a large set of people on a
touch device is authentication using a known secret, such as a PIN code [83]. This
solution, however, authenticates users for a whole session and requires an explicit login
procedure.

Identifying users based on their appearance has been demonstrated to work well for
a limited set of users. Face recognition, for example, achieves high success rates, but
requires users to directly face the camera [1].

On touch devices, HandsDown, for example, uses the camera built into a tabletop
system and requires users to press their palm against the surface [138]. The system
extracts the contour of the hand and obtains the user’s identity from the specific
dimensions of users’ fingers. Bootstrapper is a tabletop system that is equipped with
a camera pointed at users’ shoes [129]. As users approach the table, Bootstrapper
identifies them based on the color pattern of their shoes and links their identity to the
touches observed on the table surface. Carpus obtains pictures from the backs of users’
hands during interaction from a camera mounted above the tabletop surface [123]. By
matching those images against a set of images in its database, Carpus retrieves the
users’ identities and reliably associates all touch events with them.

To identify users on devices that detect touch using capacitive sensors, devices can be
trained to recognize the electrical impedance of the human body. While this approach
could be integrated into current smartphones, it has been shown to be limited to two
users that remain stationary [61].
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2.5.3 Token-Based Identification Through User-Carried Objects

To achieve reliable authentication on touch devices, but alleviate the user from typing
in a secret, researchers have proposed that users wear or carry identification tokens.
Each token is unique, thus ensuring reliable authentication. Examples include the
IR Ring, which users wear when interacting with an optical tabletop system [133].
Each ring flashes a unique light pattern, which the camera inside the table observes
to identify users. A ring on the user’s finger is thereby located close to the observed
touch location from the camera’s point of view and allows the system to associate
touch events with the respective users.

Touching the device by using an object is an alternative solution to user identification.
Marquardt et al. proposed gloves with fiducial markers attached to all fingertips
and joints [94], which allows optical tabletops to recognize who touches and which
of the user’s fingers makes contact. PhoneTouch recognizes users with a similar
approach, only that users touch the surface of the tabletop using their phones [139].
The system compares the observed touch contacts with accelerometer events sensed
by the phones to determine which phone has produced which touch, and maintains a
list of associations between phones and users. SurfaceFusion identifies objects that are
placed on the tabletop using an RFID sensor inside the table [110]. Of course, all such
solutions require users to have an additional object at hand. This renders them less
suitable for unencumbered direct touch interaction.

2.5.4 Secure User Identification

Researchers have pointed to fingerprint scanning as a solution to user identification
on touch devices. Identifying users based on their fingerprints during touch frees
them from the requirement of carrying an identification token while still being a
reliable authentication mechanism—often considered more reliable than token-based
or knowledge-based methods [93]. Fingerprints are a biometric identification feature in
widespread use, because they exhibit unique patterns of structural features [8]. (We
refer the reader to Maltoni et al. [93] for an exhaustive overview.)

2.5.5 Applications Involving User Identification

Interactive touch systems have incorporated user identification for a wide variety of
applications. The ability to associate each touch with a particular user has allowed touch
systems to personalize interaction [94], log user activity [6], and ensure that only the
authorized users can access private objects [138] or perform privileged activities [93].
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User identification on shared surfaces has been used for collaborative purposes, such
as in educational scenarios [143]. Identifying which student has completed which part
of a task that is presented on an interactive tabletop allows teachers to track students’
progress [129]. In other use cases, user identification has been used to help children
with Asperger syndrome learn social protocol [119].

2.6 fingerprint scanning in interactive systems

While fingerprint scanners have traditionally been used to identify users, more recently
they have also been used as parts of interactive systems.

Sugiura and Koseki envisioned fingerprint scanning to be integrated in future touch-
screens and prototyped it using a fingerprint scanner that they placed next to a
laptop [150]. Users interacted using the mouse cursor and to simulate a press on a
touchscreen, users touched the fingerprint scanner and the system identified them.
Their system implemented applications with user interface controls that offer user-
as well as finger-specific functionality [150]. Applications of these controls included
pasting finger-specific text, starting applications depending on the finger used for
touching a button, and copying and pasting content between computers (i. e., pick and
drop [126]).

Several patents explain how to control a mouse pointer using a fingerprint scanner. Fer-
rari and Tartagni’s device translates touch input on a fingerprint scanner to movements
of the cursor on the screen, allowing users to drag their finger to invoke relative cursor
movements [40]. This makes it conceptually similar to a touchpad that is included in
current laptop computers. Akizuki’s approach translates touches on the scanner into
absolute cursor positions [3] and Gust analyzes optical flow in order to extract input
motion [54]. A device described by Bjorn and Belongie can distinguish whether users
touch the fingerprint scanning surface using their fingertip or a flat finger [20].

To incorporate high-resolution fingerprint sensing into touchscreens, in-cell technology
has been hypothesized to one day capture the diminutive structure of fingerprints.
In-cell screens place photocells between screen pixels, allowing touchscreens to perceive
the light reflected by the structure of objects above the display. Sharp showed an image
of a fingerprint captured on a small 2.6′′ touchscreen using in-cell technology and
VGA input resolution [23]. It is unclear, however, if the quality and resolution of the
demonstrated system suffices for processing. Samsung ships a 40

′′ in-cell touchscreen
(Microsoft PixelSense [100]), though with only ∼27 dpi input resolution. This resolution
is a factor of 20 too low for high-quality fingerprint scanning. Future in-cell systems
may or may not offer the size of current mobile devices and the resolution required for
fingerprint scanning, which is considered reliable for user identification at 500 dpi [93].
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2.7 applications of glass fibers in fingerprint scanners and hci

Since Fiberio uses a fiber optic plate to scan fingerprints on the same surface that the
image is projected on, we outline below how related systems use glass fibers to sense
fingerprints. We also list applications of glass fibers in human-computer interaction.

2.7.1 Glass Fibers Used Inside Fingerprint Scanners

A number of input-only fingerprint scanners have been proposed that exploit the
partial reflection of light that occurs inside glass fibers. This Fresnel reflection results
from the transition of light from one medium into another [81], such as when light
travels from inside glass into air or from glass into human skin—as is the case with
fingerprint scanners.

While traditional fingerprint scanners use large glass prisms, allowing them to harvest
optimal contrast between the ridges and valleys of the user’s fingerprint, scanners
based on glass fibers require no camera or lens. Instead, the glass fibers guide the light
directly onto the image sensor [97, 109]. However, using glass fibers for fingerprint
scanning produces lower contrast between fingerprint ridges and valleys compared to
prism-based scanners [97, 93].

Systems in the related work have used various arrangements of glass fibers, light
source, and sensor to achieve fingerprint scanning. Examples include setups that
consist of slanted glass fibers and an illuminant at the side of the fiber bundle [48, 98]
or below the bundle [35]. In both cases, the light from the illuminant is reflected at the
top surface inside the fibers and the intensity of the reflection depends on whether
or not a fingerprint ridge is in direct contact with the surface. The reflected light is
then guided back onto the sensor. The reflections at the top surface are frustrated,
however, once a finger is touching the fibers. Other setups operate based on the same
concept, but employ straight glass fibers for the touch surface [47]. The apparatus
thereby illuminates the user’s finger through the space between the fibers and captures
the reflected light that is guided onto the sensor using the fibers.

Alternative setups use solid bundles and place them away from the sensor [71]. This,
however, enlarges the whole setup and additionally requires a lens to focus all re-
flections onto the sensor. In this setup, the illuminant emits light at the user’s finger
through the bundle while the camera is focused onto a small region to capture all
reflections.

All previous setups face the challenge of optimally illuminating the user’s finger
to produce light reflections that are high in contrast. While good illumination is
comparably easy to achieve for a small area on the touch surface, such as those that
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accommodate single fingers, this approach does not scale to larger surfaces, such as
tabletops.

Note that all of the previous fingerprint scanners do not produce visual output on the
surface to allow for user interaction. They exclusively use glass fibers for scanning,
which makes all systems input-only devices.

2.7.2 Applications of Glass-Fiber Bundles in Human-Computer Interaction

A number of projects in human-computer interaction have leveraged the property of
glass fibers to guide light from one end to the other. Because this property holds
true when glass fibers bend up to a certain amount, systems have been able to route
light in non-traditional ways compared to standard systems. For example, FiberBoard
packs optical sensing into a small form factor by folding the optical paths of its camera
system using glass fibers [74]. Lumino fills tangible blocks with glass fibers to allow
tabletop systems to detect stacked arrangements of such blocks [16]. Since glass fibers
guide the light, stacked blocks transfer light from their top surface to their bottom
surface, which works across blocks. Using fiducial markers and a slanted setup of
glass fibers, each block projects down the marker of the block stacked on top, such that
the camera inside a tabletop system observes the set of all markers juxtaposed on the
bottom surface of the lowest block.

Systems have also used glass fibers to create a display. The FUSA2 system consists of a
bunch of fibers and uses a projector to turn the end of the fibers that face the user into
a display [106]. The system also senses hovering hands on the fibers’ loose ends using
a camera and infrared illuminants that are positioned between the fibers.

2.8 interactive floors

Because we demonstrate similar outcomes as before on a pressure-sensing smart floor,
such as user identification and 3d pose reconstruction, we now list related systems
in the domain of foot-based interaction on floors and smart rooms in ubiquitous
computing.

2.8.1 Pressure-Sensing Floors

A number of (low-resolution) floor prototypes have been presented that are based on
pressure sensing. For example, the projection-less magic carpet senses pressure using
piezoelectric wires and a pair of Doppler radars [114]. Z-tiles improved on this by
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introducing a modular system of interlocking tiles [128]. Pressure sensing on floors has
also been implemented using force-sensing resistors [156]. FootSee matches foot data
from a 1.6 m2 pressure pad to pre-recorded pose animations of a single user with in a
fixed orientation [175].

The UnMousePad implements resistive force sensing and provides a pressure-sensitive
touchpad for desktop purposes [132]. Srinivasan et al. built larger-scale installations
with a similar approach in the context of floor interaction [145]. They combined the
installation with marker-based motion systems as well as audio and video tracking.

Since none of the existing technologies scale to the megapixel range of resolution that
we explore in our setup, our prototype uses high-resolution FTIR sensing to detect
per-pixel pressure input [58]. The working principle of FTIR does not limit the spatial
resolution of pressure sensing; the camera used to record images determines what
low-level structure the system can resolve, such as the pattern of users’ shoes or texture
of their clothing in our case. Systems in the related work have also studied the pressure
abilities of large FTIR touchscreens, such as in the context of wall displays [30].

Other instrumented floors that use cameras have mounted them at the ceiling (e. g.,
iFloor [85]), which is a technique that originated in Ubicomp environments (e. g.,
EasyLiving [25]). Alternatives have used setups based on front diffused illumination,
such as the IGameFloor [52].

Paradiso, Abler, et al. argued that for many types of floor interaction “. . . fine-grained
information delivered by a video camera is unnecessary or potentially inadequate”
[114]. An alternative to enabling floor interaction is instrumenting the users’ shoes
directly. Choi and Ricci created shoes that detect walking direction and speed using but-
tons mounted under users’ soles [27]. The shoes were thereby mainly used for artistic
performances and movement training. By adding bending, twisting, orientation, accel-
eration, and pressure sensors, Paradiso, Hu, and Hsiao gave dance performances extra
expressiveness [115]. Kume’s Fantastic Phantom Slippers are tracked optically [141],
Visell et al. used force sensors to accomplish this [156], and Paradiso and Hu tracked
shoes using laser rangefinders [113] and active sonar (Magic Carpet [114]).

2.8.2 User Identification on Smart Floors

Interactive floors so far could not use the high resolution our prototypes provide to
identify users by their shoe soles. However, footprints have been analyzed as evidence
in crime scene investigation [116]. In particular, sole imprints and sole wear have been
used to match people either by hand and using semi-automatic techniques based on
local feature extractors [117].
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Using lower resolution sensing, other prototypes have explored different means to
identify users. For example, the screen-less Smart Floor identifies users walking across
by observing the forces and timing of the individual phases of walking [111].

2.8.3 Smart Floors, Rooms, and Multi-Display Environments

Interactive floors as part of systems in the related work have often been used for natural
walk-up-and-use [85], immersion as part of CAVEs [29, 87], gaming [52], and multi-user
collaborative applications [85].

The concept of integrating computing into the environment goes back as far as Weiser
(Ubiquitous Computing [162]). The concept has been researched in the form of smart
components in a room, e. g., in multi-display environments, such as the Stanford
iRoom [21] or roomware (iLand [149]). Alternatively, researchers have instrumented
the rooms themselves, e. g., using cameras and microphones (e. g., EasyLiving [25]),
and made user tracking a key component of their system. The Georgia Tech Aware
Home tracks users based on multi-user head tracking and combined audio and video
sensing [82]. With the advent of 3d cameras, researchers have started to explore
mounting a set of depth cameras inside rooms to sense objects in 3d and allow users
to interact in 3d (e. g., LightSpace [170]) or to track users and objects (e. g., interactive
projectors [101]).

To enable systems to track otherwise passive objects in a room, such as chairs and
shelves, a series of research projects and products have integrated pressure sensing
into such objects. Applications include health monitoring, for instance to prevent
Decubiti [154], orthopedic use inside shoes [152], and sensing pose while sitting [104,
105].

In contrast to instrumenting all passive objects in a room, we restrict sensing to the
floor and design objects so they propagate interaction to the floor, where we can
observe it. The pressure-transmitting furniture we present builds on the concept of
sensing through an object, which has been explored in the context of tangible objects.
Mechanisms include the propagation of light through holes (stackable markers [14])
and glass fibers (Lumino [16]), as well as the propagation of magnetic forces, detected
using pressure sensors (Geckos [88]).
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This chapter is based on results published in [66].

a b

Figure 3.1: (a) A user has repeatedly acquired the crosshairs using finger poses between
90° (vertical) and 15° pitch (almost horizontal). The five ovals contain 65% of the contact
points the touchpad recorded for each pitch. The key observation is that the ovals are
offset with respect to each other, yet small. We find a similar effect across different
levels of finger roll and finger yaw, and across users. We conclude that the inaccuracy
of touch (dashed oval) is primarily the result of failure to distinguish between different
users and finger postures. (b) The ridges of this fingerprint belong to the front region
of a fingertip. Our Ridgepad prototype uses this observation to reconstruct finger pose
and user ID, which allows it to exploit the new model and obtain 1.8 times higher
accuracy than capacitive sensing.

It is generally assumed that touch input cannot be accurate because of the fat finger
problem, i. e., the softness of the fingertip combined with the occlusion of the target by
the finger. In this chapter, we show that this is not the case. We base our argument
on a new model of touch inaccuracy as shown in Figure 3.1a. Our model is not based
on the fat finger problem, but on the perceived input point problem [157]. This problem
describes input error as an effect of touch screens reporting sensed input locations at
an offset from the target the user intends to touch. From this problem, we derive a
generalized model that represents offsets for individual finger postures and users. We
thereby switch from the traditional 2d model of touch to a model that considers touch
a phenomenon in 3d space. We report a user study, in which the generalized model
explained 67% of the touch inaccuracy that was previously attributed to the fat finger
problem.

29
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We then present two devices that exploit the new model in order to improve touch
accuracy. Both models consider touch on a per-posture and per-user basis in order to in-
crease accuracy by applying respective offsets. Our Ridgepad prototype extracts posture
and user ID from the user’s fingerprint during each touch interaction (Figure 3.1b). In
a user study, it achieved 1.8 times higher accuracy than a simulated capacitive baseline
condition. A prototype based on optical tracking achieved 3.3 times higher accuracy.
The increase in accuracy can be used to make touch interfaces more reliable, to pack
up to 3.32 > 10 times more controls into the same surface, or to bring touch input to
very small mobile devices.

3.1 input accuracy on touchscreen devices

Acquiring a small target on a touch screen is error prone. We can examine how
inaccurate touch is on a given device by letting users acquire a small target repeatedly:
the more inaccurate the device, the wider spread the distribution of the sensed contact
points (indicated with a dashed outline in Figure 3.1a; the user has targeted the
crosshairs). When acquiring a target of finite size, such as a button, wider spread
results in an increased risk of missing the target.

The common explanation for the inaccuracy of touch is the fat finger problem. That is,
the softness of the user’s skin causes the touch position to be sensed anywhere within
the contact area between the user’s fingertip and the device. At the same time, the
finger occludes the target. This prevents the target from providing visual feedback so
that users cannot compensate for the randomness.

Researchers have therefore argued that users cannot reliably acquire targets smaller
than a certain size.

3.2 an alternative model for the inaccuracy of touch input

While the fat finger problem has received a lot of attention, we argue that it is not the
true reason for the inaccuracy of touch. We argue that the perceived input point model is
the primary source of the problem. Vogel and Baudisch mention it in the same paper
that discusses the fat finger problem [157]. When a user tries to acquire a target, the
center of the contact area tends to be located a couple of millimeters off the target
location—typically “below” the target (the black dot in Figure 3.1a). Unlike the fat
finger problem, however, the “perceived input point problem” is a systematic effect.
This allows compensating for the effect by applying an inverse offset when recognizing
touch.
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We generalize the perceived input point problem in order to reduce touch inaccuracy
even further. We hypothesize that the offset between the center of the contact area and
the target depends not only on the x/y location of the target, but also on the wider
context of the touch interaction. The wider context in this generalized perceived input point
model could potentially include a larger number of variables. We examine the following
four in this chapter:

1–3. Angle between the finger and the touch surface (roll, pitch, and yaw). The
related work suggests that pointing might be affected by changes in finger
orientation (also called “yaw”) [159] and finger “steepness” (or “pitch”) [45].
We also include finger roll. By considering all three finger angles, we
implicitly switch from the traditional 2d model of touch to a model that
considers touch a phenomenon in 3d space.

4. User. Each user might have a different mental model of how to acquire
the target. While touch is well understood in the macroscopic world
(most people will agree on whether a person is touching the seat or the
backrest of a chair), note that there is probably no universally agreed upon
interpretation for determining what exact location a finger is touching.

To verify these assumptions we conducted a user study.

3.3 study 1: impact of user and 3d finger pose on touch accuracy

The generalized perceived input point model makes the assumption that the offset be-
tween the contact point and target depends on the wider context of the touch interaction,
in particular roll, pitch, yaw, and user ID. The purpose of this study was to verify this
assumption.

Our main hypothesis was that a variation of touch context, i. e., a variation of finger
posture and/or user ID, would result in distinct clusters of touch positions. Figure 3.2
illustrates this. A participant has repeatedly acquired a target using five different finger
postures. Each one results in a distribution, which we illustrate using an oval. If touch
inaccuracy is governed primarily by the fat finger problem, we expect to see large ovals,
all of which are centered on roughly the same point (Figure 3.2a). If the inaccuracy of
touch, however, is primarily explained by the generalized perceived input point model,
we expect to see ovals that are visibly offset with respect to each other (Figure 3.2b), yet
each of them is small in size. That is, the spread in measured input locations within
each condition is small (i. e., the average distance of all samples in a distribution from
its center of gravity).
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a b

Figure 3.2: Main hypothesis. Expected outcome if touch inaccuracy is caused primarily
(a) by the fat finger problem or (b) by the generalized perceived input point model.

3.3.1 Task

Figure 3.3 shows a participant during the study. A touchpad showed a single target,
which participants acquired repeatedly. (There was no reason to include distracter
targets. Distracters have a major effect on adaptive input techniques, such as magnetic
targets [18], but not on unmodified touch). During each trial, participants first touched
the start button on the pad (labeled “okay” in Figure 3.3). Then participants assumed
the finger angle for the current condition with their right index finger and acquired the
target. Participants committed the touch interaction by pressing a foot switch. This
recorded the touch location reported by the touch pad, played a sound, and completed
the trial. Participants did not receive any feedback about the location registered by the
touchpad.

a b c

Figure 3.3: (a) A participant acquiring the crosshairs in the touchpad during the
study. The laptop displays instructions and the finger orientation for the current trial.
Participants committed each trial by pushing the foot switch. (b) Participants rested
their elbow on the table to prevent fatigue. (c) The crosshairs mark the target.

We took the following four measures to minimize the impact of other potential factors.
First, participants kept their head in a fixed position above the touchpad, as shown
in Figure 3.3. This controlled for parallax. Second, the crosshairs marking the target
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extended beyond participants’ fingers, allowing participants to maintain a certain
amount of visual control during targeting. Third, the use of a foot switch allowed us
to avoid artifacts common with other commit methods, such as inadvertent motion
during take-off. And finally, participants were told to use as much time as necessary
and that task time would not be recorded. Every participant completed their 600 trials
in under 40 minutes.

In the case of an accidental commit, such as activating the foot switch twice, the system
discarded the input, notified participants with an acoustic signal, and had them repeat
the trial.

3.3.2 Finger Angles: Roll, Pitch, and Yaw

Participants acquired the target using their right index finger with five different levels
of pitch and five different levels of roll (Figure 3.4). We varied pitch between “close
to horizontal” = 15° and “straight down” = 90°. Pitch values beyond that caused
the fingernail to touch first, which clashes with many types of capacitive devices. A
roll of 0° meant that the nail was horizontal. We varied roll between “rolled slightly
left” = -15° and “rolled fully to the right” = 90°.

Varying roll and pitch separately allowed us to keep the number of trials manageable.
During the pitch session, participants kept finger roll horizontal (0°), while they used a
fixed pitch angle of 15° during the roll session. Combinations of pitch and roll are to
be interpreted pitch-first. A pitch/roll of 15°/45° thus means “assume a pitch of 15°
and then roll the finger 45° to the right.”

90° 45° 15° 0° -15°

90° 65° 45° 25° 15°

roll

pitch

Figure 3.4: Participants acquired the crosshairs by first assuming a combination of these
finger pitch and finger roll angles and then touching the target.

We also studied the third angle, i. e., yaw. However, there was no need to vary it,
because yaw takes places in the plane of the touchpad. As a result, we can reconstruct
all levels of yaw by rotating the touch locations (obtained from a single level of yaw)
post-hoc in software around the target. This, however, requires knowledge of the target
location. Since the capacitive pad cannot see the target, we approximated its location
by testing two levels of touchpad orientation (0° and 180°). We then determined the
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rotation center as the center of gravity among all touch locations, before we flipped the
180° condition and merged its samples with the 0° condition. To make sure that the
180° condition be identical from the participants’ perspective, participants operated a
second “okay” button on the opposite of the touchpad (cropped in Figure 3.3c).

3.3.3 Procedure

To keep fatigue at a reasonable level, participants performed their trials in two sessions.

In one session, participants performed five variations of pitch {15°, 25°, 45°, 65°, and
90°}. In the other session, participants performed five variations of roll {-15°, 0°, 15°,
45°, and 90°}. Session order was counterbalanced across participants.

Within a session, participants performed a sequence of 150 trials with the touchpad
in one orientation and then a second sequence of 150 trials with the touch pad in the
opposite orientation. Pad rotation was counterbalanced across participants. For each
sequence, participants completed 5 blocks of 5 angles × 6 repetitions each. The order
of finger angles was counterbalanced across trial blocks.

Each participant completed all conditions. Each participant completed 5 angles ×
2 pad orientations × 2 sessions × 5 blocks × 6 trials per block = 600 trials.

3.3.4 Apparatus

The touchpad was a 6.5′′×4.9′′ capacitive FingerWorks iGesture multi-touchpad [42]. It
was connected to an Asus eeePC 900HD. The foot switch was a Boss FS-5U.

3.3.5 Participants

We recruited 12 participants (3 female) from our institution. All participants were
right-handed and between 17 and 34 years old. Each received a small gratuity as a
compensation for their time and we awarded e 20 to the most accurate participant.

3.3.6 Hypotheses

We had one main and four dependent hypotheses. Our main hypothesis was that a
variation of touch context, i. e., a variation of finger posture and/or user ID, would
result in significantly different clusters of touch positions. The dependent hypotheses
spell this out for the individual variables.
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1. Pitch: Different levels of pitch result in distinct touch location clusters. In
other words, we expected to find higher spread across pitch levels than
within a given pitch level.

2. Roll: analog to pitch.

3. Yaw: analog to pitch.

4. User: Cluster organization will differ across participants. Different users
have different finger shapes and we hypothesized they might also have
different mental models of how to map their large fingers to a small target.

3.3.7 Results

Figure 3.5 summarizes the complete touch location data obtained from this study.
Each column summarizes the recorded locations for one participant; the top chart
shows aggregated clusters of touch locations for the different levels of roll, the bottom
chart shows the aggregation of the pitch session. All ovals in Figure 3.5 represent
confidence ellipsoids that contain 65% of the recognized touch locations per condition.
The crosshairs in each chart is the target location. Figure 3.6 shows two examples in
additional detail (pitch data of Participants 3 and 4).
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Figure 3.5: Clusters of touch locations for each of the 12 participants (columns 1–12).
Crosshairs represent target locations; ovals represent confident ellipsoids. (a) Each
of the 5 ovals represents one level of roll. (b) Each of the 5 ovals represents one level
of pitch. All diagrams are to scale. Note how different patterns suggest that each
participant had a different interpretation of touch.
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Pitch

We analyzed the effect of pitch using a repeated measures one-way ANOVA. To better
understand the nature of the differences, we decomposed the differences in recognized
touch position into differences along the finger axis (y axis in the chart) and across
the finger axis (x axis in the chart). Changing finger pitch had a significant effect on
recognized touch positions (F4,8 = 6.620, p = 0.012) along the finger axis. Pair-wise
comparisons using Bonferroni-corrected confidence intervals showed that the touch
locations of all levels of pitch were significantly different (all p < 0.05). We also found
a main effect of pitch on touch location across the finger axis (F4,8 = 6.972, p = 0.01).
However, pair-wise post-hoc tests showed no significant differences.

1cm

65°

25°

90°

15°

45°
90°

65°
WĂƌƟĐŝƉĂŶƚ�ηϯ WĂƌƟĐŝƉĂŶƚ�ηϰ

45°

25°

15°

Figure 3.6: Close-up of touch locations organized by pitch of Participants 3 and 4 from
Figure 3.5. Even though clusters are much further apart for Participant 4, both are
equally “accurate” under the generalized perceived input point model.

Roll

A repeated measures one-way ANOVA found a significant main effect of roll on sensed
touch position along the finger axis (F4,8 = 4.574, p = 0.032). Bonferroni corrected
pair-wise comparisons showed a significant difference between 90° roll and all other
roll levels, as well as 45° vs. -15° and 0° (all p < 0.05). An ANOVA on touch location
across the finger axis did not find an effect (F4,8 = 1.444, p = 0.305).
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Yaw

We ran paired-samples t-tests comparing touch locations across and along the finger
axis in the two yaw conditions. We found both to be significantly different (across:
t11 = 6.570, p < 0.001; along: t11 = 9.361, p < 0.001).

Participant

We ran a two-way ANOVA on finger pitch and participant both along and across the
finger axis, using participant as a random factor. We found a significant interaction
between pitch and participant and significant main effects for both (all p < 0.001).
For each participant, we ran separate one-way ANOVAs on finger pitch to determine
where the effect was particularly evident. We found a significant main effect on touch
location along the finger axis for all participants and a significant main effect across the
finger access for all but one participant (all p < 0.05).

Similarly, we ran a two-way ANOVA on finger roll and participant. We found significant
main effects for participant along and across the finger axis, as well as for finger roll
along the finger axis. We further found a significant interaction between finger roll and
participant along and across the finger axis (all p < 0.001). This indicates that each
participant exhibits a different behavior and touch pattern in response to finger roll.
We ran one-way ANOVAs on finger roll separately for each participant. We found
a significant main effect of finger roll both along and across the finger axis for all
participants (all p < 0.05), except one whose error rates did not differ significantly
across the finger axis.

3.3.8 Discussion

Finger angles

As hypothesized, all three angles had an impact on touch location and led to distinct
clusters, supporting hypotheses 1–3. As expected based on work by Forlines et al.,
finger pitch primarily impacted touch location along the finger axis (visible as vertical
patterns in Figure 3.5, bottom row). A “flatter finger” caused the touchpad to locate
input coordinates farther away from the target towards the user’s palm. Somewhat
surprisingly, variations in roll impacted touch location primarily along the finger axis
as well, more than across (visible as vertical patterns in Figure 3.5, top row). Finally,
as expected, there also was a significant effect of yaw on touch location. This is also
obvious in Figure 3.5 where none of the groups of ovals are centered on the target.
This emphasizes the fact that global offsets, as applied by Vogel and Baudisch [157]
need to consider hand yaw.
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Users

Also as hypothesized, there was an effect of user on the touch location. As shown
in Figure 3.5, the clusters of recognized touch positions varied across participants,
and they did so quite substantially. Figure 3.6 shows a particularly different pair: For
Participant 4, touch locations vary drastically with pitch, while pitch has very little
impact on the touch locations produced by Participant 3.

Based on this chart, one might think that Participant 3 is simply more accurate than
Participant 4, i. e., that Participant 3 performed the task with additional care. Whether
this is true or not is a matter of perspective. When we look at the size of the individual
clusters of the two users, we see that they are roughly comparable. This means that
both participants reproduced the target location equally well. What differs between
the two participants is their mental model. Participant 3’s understanding of touch
coincides strongly with the capacitive touchpad model.

So while Participant 3 is more fit than Participant 4 when operating today’s touch
devices, when using an input device based on the generalized perceived input point
model, this is not the case anymore. As we explain in the following sections, such a
device compensates for roll, pitch, yaw, and user ID. “Accuracy” now means neither
the proximity of a cluster to the target (because we can compensate for it), nor the
proximity of clusters to each other (again, because we can compensate for it). Instead,
accuracy now means size of clusters, as all other factors can be compensated for. Since
the cluster sizes for Participants 3 and 4 are comparable, this means both participants
will perform equally well under the new model.

Main Hypothesis

Overall, and most importantly, our study supports our main hypothesis: Roll, pitch,
yaw, and user ID all lead to distinct clusters (i. e., significantly different average cen-
troids). As a matter of fact, these clusters are clearly separated, as discussed earlier
when explaining Figure 3.2. Our findings therefore support that the generalized per-
ceived input point model indeed explains a significant part of the inaccuracy of touch,
rather than the fat finger problem.

Exploiting the Model With a Device

These observations suggest that a device should be able to obtain improved accuracy
by applying compensating offsets for each condition.

The data from our study allows us to make predictions about the performance such a
device might achieve. Figure 3.7 shows a summary. Each bar denotes the diameter of a
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round button that contains 95% of all touches, assuming that we apply compensating
offsets for different subsets of factors. Each bar was computed by mapping the centroids
of different sizes of clusters to the target center location. For the traditional touchpad

condition (left bar), no mapping was applied. For the per yaw condition, the centroid
of all touches was moved to the target. For the per yaw and roll/pitch condition,
the centroids of each roll cluster and each pitch cluster were moved to the target. For
the per all condition, the centroids of each roll cluster and each pitch cluster for each
participant were moved to the target.
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Figure 3.7: Minimum size of a button that contains 95% of all touches on a touch device
that knows about different subsets of roll/pitch, yaw, and user ID. Error bars encode
standard deviation across all samples.

As illustrated by the chart, each additional piece of information should allow the device
to further improve its accuracy up to a factor of 2.75 if all angles and user ID are
included. Instead of buttons measuring 15 mm, such a device should allow users to
reliably acquire buttons measuring 5.4 mm.

A factor of 2.75 suggests considerable potential. In order to exploit it, however, we
need a touch device capable of extracting these four additional variables from a touch
interaction. We have created two prototypes of such devices. One of them is Ridgepad.

3.4 ridgepad : a high-precision touch input device

Ridgepad is a touch input device that implements the requirements of the generalized
perceived input point model based on a regular off-the-shelf fingerprint scanner (a
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Figure 3.8: Our Ridgepad prototype is based on an L SCAN Guardian fingerprint scanner.

high-resolution optical L SCAN Guardian, see Figure 3.8). Ridgepad senses input only
and provides no visual output to the user.

The fingerprint scanner captures the contact area between the user’s finger and the
device. That is, it precisely observes the parts that are in direct contact with the surface.

Traditional touch devices, such as the FingerWorks pad we used in the previous study
obtain only the contact area of the finger with the surface. Ridgepad obtains the same
contact area, albeit in high resolution from the user’s fingerprint. The fingerprint
offers two additional types of information. First, it allows Ridgepad to identify the
user. Second, it allows Ridgepad to analyze the portion of the user’s fingerprint that is
located inside the contact area. Based on its analysis of which part of the fingerprint
touches the screen (Figure 3.1b), Ridgepad infers all three finger angles, i. e., yaw, pitch,
and roll.

drag roll

Figure 3.9: (a) When dragging, fingerprint outline and features move in synchrony.
(b) When rolling the finger on the surface, fingerprint features remain stationary.

This mechanism allows Ridgepad to extract rolling and dragging from a single interac-
tion. As shown in Figure 3.9a, when dragging, fingerprint outline and features move
in synchrony (i. e., features do not change their position relative inside the fingerprint).
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When rolling the finger on the surface, however, fingerprint features remain stationary
(Figure 3.9b).

3.4.1 Algorithm: Calibrating Ridgepad for High Input Accuracy

By default, Ridgepad is only as accurate as a regular touchpad. Similar to such
touchpads, it infers touch-input locations from the center of the contact area. Ridgepad
achieves improved accuracy through calibration.

During calibration, users repeatedly acquire a single target on the fingerprint scanner.
It is not necessary for users to touch under specific roll, pitch, and device rotations;
the more postures users cover, however, the more postures will benefit from improved
precision.

Every calibration trial produces a pair of a fingerprint image and an associated target
position relative to the center of the fingerprint, i. e., an error offset. All such pairs are
stored in the user’s profile.

The profile is user-specific, but not device-specific. This allows users to calibrate future
devices instantly using an existing profile that is associated with their fingerprint.

3.4.2 Algorithm: Using Ridgepad As a Touch Device

During actual use, users touch Ridgepad’s surface just like any other touch device.
Ridgepad computes the center of the contact area as a reference point. It then compares
the observed fingerprint with all fingerprints in its database (the search space is
reduced to the user’s profile as soon as the user has been identified). Ridgepad
compares fingerprints using the generic image-matching algorithm SURF by Bay et al.
[17]. SURF extracts features from images, such as intersections of lines. It then finds
the image transformation that maximizes the number of features that line up.

The number of fingerprints in the profile that have some match with an observed
fingerprint is typically large. To determine which fingerprints are most likely to
represent the pitch and roll position of the observed fingerprint, Ridgepad simply
uses the number of features SURF is able to match as a metric. This works because
two images are likely to exhibit similar features if and only if similar parts of the
finger touched the surface. All features typically match only if pitch, roll, and yaw are
identical.

Based on this similarity function, Ridgepad looks up the k closest matches in the
user’s profile (k-nearest neighbor algorithm). Ridgepad then averages the offset values
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associated with the chosen neighbors (optionally with additional weight for better
matches) and finally adds that offset to the center of the current touch location.

3.4.3 Hardware Implementation

The Guardian fingerprint scanner in our prototype offers a 3.2′′×3.0′′ touch area. As
common for fingerprint scanners, it works based on frustrated total internal reflection.
Unlike FTIR implementations in current tabletop or wall systems, such as [58], the
glass surface is illuminated from below and its illumination is frustrated by the finger
(Figure 5.2 in Section 5.3 explains the optical path in detail). The Guardian provides
images at 500 dpi, which allows for high-quality fingerprint recognition.

3.4.4 Benefits and Limitations

The generic nature of its algorithm makes Ridgepad particularly robust and flexible.
Ridgepad finds matches for a given yaw/pitch/roll/user fingerprint, because it finds
other fingerprints that “look” similar; nowhere in the system are they ever labeled
with angles. While we designed the algorithm to work with roll, pitch, and yaw, it is
independent of any such specifics. It should therefore be straightforward to extend the
algorithm to other features, such as finger pressure.

One of the limitations of the current implementation is time complexity. The Guardian
fingerprint scanner in our prototype requires a noticeable pause before transmitting
a picture. In addition, our non-optimized prototype code sequentially compares
fingerprints with all fingerprints in the user’s database, which takes 200–300 ms for
each comparison. Future versions should be able to achieve real-time performance by
extracting features up-front and comparing feature vectors using more suitable data
structures.

3.5 study 2: touch precision with ridgepad

To verify the performance of touch devices based on the generalized perceived input
point model, we conducted a second user study. We compared Ridgepad and a device
design based on an optical tracker with a traditional baseline condition. Similar to the
first study in this chapter, we analyzed the effect of roll, pitch, and yaw. Our main
hypothesis was that Ridgepad and the optical tracker would outperform the baseline
condition.
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3.5.1 Interfaces

We tested three interface conditions, all of which were implemented by the hardware
setup shown in Figure 3.10 (left). This particular setup allowed us to process every
targeting trial with each of the three interfaces simultaneously.

1. The fingerprint interface was implemented using Ridgepad and employed
the algorithm described in the previous section.

2. The control interface simulated a traditional touchpad interface. It re-
ceived the same input from the fingerprint scanner as the fingerprint in-
terface. However, this condition did not use the fingerprint features and
instead reduced the fingerprint to a contact point at the center of the contact
area.

3. The optical tracker interface was implemented based on a six-degree
of freedom optical tracking system (an 8-camera OptiTrack V100 system).
To allow the system to track the participant’s fingertip, we attached five
3-mm retro-reflective markers to the participant’s fingernail as shown in
Figure 3.10 (left). The extreme accuracy of the optical tracker made this
interface a “gold standard” condition that allowed us to obtain an upper
bound for the performance enabled by the generalized perceived input
point model.

pitch

roll -15° 0° 15° 45° 90°

× × × × ×15°

×25°

× × × × ×45°

×65°

×90°

Figure 3.10: Left: The three interfaces: The fingerprint scanner simultaneously imple-
mented the fingerprint interface and the control interface. The red cameras around
implemented the optical tracker interface, which was based on an OptiTrack VT100
system. Between trials, participants tapped the touch pad. They committed using
the foot switch. Right: Angles for finger pitch and finger roll that participants first
assumed before acquiring the target on the touchpad.

Similar to the fingerprint interface, the optical tracker interface applied corrections
by averaging offsets from k = 13 training samples that matched in terms of roll, pitch
and yaw. The optical tracker interface obtained these angles directly from observing
the location of the markers in 3d space.
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Since fingerprint interface and optical tracker interface required per-user calibra-
tion, we used 80% of all trials (520 of 650) as training data for the respective calibration
procedures. We used the remaining 20% of all trials (130) for the actual analysis.

3.5.2 Task

As in our first study, participants acquired a single target repeatedly. The target was
drawn onto the surface of the fingerprint scanner. Half of all participants acquired a
target marked with crosshairs similar to our first study. The other half of participants
acquired a target marked with only a dot. The additional independent variable
crosshairs vs. dot allowed us to study the impact of the occlusion problem. As in the
first study, participants pressed “okay,” acquired the target, and committed using a
foot switch. All participants completed all trials of one session in about 30 minutes.

3.5.3 Procedure

Participants completed the same roll/pitch combination as in the first user study plus
four additional variations of roll across 45 deg of pitch as shown in Figure 3.10 (right,
additions are highlighted in bold).

Participants completed the study in two sessions; the second session was identical to
the first, except that we rotated the scanner for the same reasons as in our first study.
We counterbalanced the order of all conditions within sessions as well as sessions and
rotations across participants. Overall, participants completed 2 sessions × 5 blocks ×
5 repetitions × 13 angles = 650 trials.

3.5.4 Participants

We recruited a fresh set of 12 participants (2 female) from our institution. All par-
ticipants were right-handed and between 22 and 34 years old. Again, we gave each
participant a small gratuity for their time and awarded e 20 to the most precise partici-
pant.

3.5.5 Apparatus

The fingerprint scanner and the optical tracker were powered using an Intel Core 2

Duo machine running at 3GHz with 3GB of RAM. We reused both the foot switch and
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the FingerWorks pad from our first study; however, the latter was only used for the
“okay” button in this study.

3.5.6 Hypotheses

We had two hypotheses:

1. Since optical trackers track angles with extremely high precision, we ex-
pected the optical tracker interface to redeem the entire accuracy benefit
suggested by the first study, i. e., an improvement of a factor of 2.75 com-
pared to the simulated capacitive control interface.

2. Ridgepad cannot reconstruct angles quite as accurately as an optical tracker.
Still we expected the fingerprint interface to improve input precision
substantially compared to the simulated control interface.

We were also curious to see how large the improvement of the fingerprint interface
would be compared to the control interface.

3.5.7 Results

Similar to the analysis of our first study, we compared the spread of recorded input
locations (i. e., the mean distance of all points in a condition from their center of gravity).
We compared the mean input spread for each participant when using each interface.

We ran a one-way ANOVA on averaged per-participant spread with participant
as a random variable and found a significant main effect of interface on spread
(F2,9 = 49.457, p < 0.001). Pair-wise comparisons using Bonferroni-corrected con-
fidence intervals showed statistically significant differences of spread between all
interfaces (p < 0.01). The control interface caused the largest amount of average
spread (2.75 mm), followed by fingerprint-corrected locations (1.24 mm). Locations
corrected with the optical tracker interface had the lowest average spread (0.85 mm).
This means that the spread of touch input after fingerprint-based correction was on
average 2.2 times smaller than when uncorrected. On average, optical-tracker-based
corrections brought down spread by a factor of 3.3 compared to the control interface.

Dot Targets vs. Crosshairs Targets

Average spread for each interface was 1.9 mm/1.4 mm/0.9 mm for the crosshairs
conditions and 2.2 mm/1.9 mm/1.2 mm for the dot conditions. A two-way ANOVA,
however, did not find a significant interaction between target type and interface
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(F2,9 = 1.44, p = 0.287). We did not find a main effect of target type on spread either
(F1,10 = 3.186, p = 0.105). The fact that dot targets performed successfully as well,
however, suggest that the methods we propose also apply to targets that the finger
completely occludes during touch.

3.5.8 Discussion

This study supports our claim that touch devices can increase accuracy by exploiting
the generalized perceived input point model.

Figure 3.11 shows another perspective on the results. It shows the minimum target
sizes that users can acquire with 95% accuracy for each of the three interfaces. Sizes
were computed so as to include 95% of all touches across participants and conditions
(spread across all participants, sessions, and roll/pitch conditions plus two standard
deviations).
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Figure 3.11: Minimum target sizes to achieve a 95% success rate. The circles are to-scale
representations of the respective minimum target sizes. Error bars encode standard
deviations.

The circles on top of Figure 3.11 illustrate the resulting buttons to scale. The fingerprint

interface achieves a minimum target size 1.8 times smaller than the control interface.
The optical tracker interface reduces target size by a factor of 3.3. The resulting
button would occupy less than 10% of the size of the control interface button.
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3.6 conclusions

In this chapter, we made two types of contribution.

On the one hand, we made a technical contribution. Our Ridgepad prototype achieved
1.8 times higher accuracy than simulated capacitive and we demonstrated that the use
of high precision 3d tracking can more than triple touch accuracy. This substantial
increase in accuracy can be used to make touch interfaces more reliable or to pack
up to 10 times more controls into the same touch surface. Future versions of the
optical tracking device might achieve a smaller footprint by using cameras placed
in the corners of the screen. In Chapter 5, we present our prototype Fiberio, which
extends Ridgepad’s functionality onto a touchscreen.

On the other hand, we made a contribution in the theoretical domain, which we tend to
think of as at least equally important. We introduced a new model for touch inaccuracy,
the generalized perceived input point model. We presented a user study, the findings of
which are congruent with our new model, while they refute the fat finger problem, which
was traditionally considered the primary source of touch inaccuracy.

This chapter also contributes a new perspective on touch. Touch has traditionally been
considered a 2d phenomenon, most likely because touch screen interaction required
only two coordinates, i. e., an x/y coordinate pair. The proposed model, in contrast,
establishes touch as a phenomenon of not only the touch surface, but of a wider context
of 3d factors. While we primarily investigated the user’s finger posture in 3d, this
wider context may include additional factors, such as head position, device orientation,
parallax, and so on. Tracking these additional factors might allow future devices to
realize even larger improvements in touch accuracy. Additional research is required
here.

Finally, we learned about users. We found that users are not inaccurate—they are just
different. The most likely explanation for this difference is that touch on a millimeter
scale was never defined in the first place. For targets on this almost microscopic scale,
pointing means to “dock” a comparably large, asymmetric object with a tilted surface.
Comparing the arrangement of ovals across Figure 3.5 clearly shows that no two
participants of our study had the same mental model of how to accomplish this.
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Figure 4.1: A study participant targeting crosshairs using different finger angles. Can
you guess how this user is conceptualizing touch, i. e., what geometric relationship
between finger and crosshairs the user is trying to maintain independent of how the
finger is held? Our findings suggest that users indeed target as suggested by this
illustration, i. e., by aligning finger features and outlines in a hypothesized top-down
perspective.

Our findings in Chapter 3 indicate that current touch devices are subject to systematic
error offsets because of their assumption that users acquire targets with the center of
the contact area between finger and device. The existence of such systematic error
offsets suggests that the assumption underlying the implementation of current devices
is most likely wrong. In this chapter, we revisit this assumption.

In a series of three user studies, we find evidence that the features that users align
with the target are visual features as shown in Figure 4.1. These features are located on
the top of the user’s fingers, not at the bottom, as assumed by traditional devices. We
present the projected center model, under which error offsets drop to 1.6 mm, compared

49



50 understanding touch: a new perspective

to 4 mm for the traditional model. This suggests that the new model is indeed a good
approximation of how users conceptualize touch input.

The primary contribution of this chapter is to help understand touch—one of the key
input technologies in human-computer interaction. At the same time, our findings
inform the design of future touch input technology. They explain the inaccuracy of
traditional touch devices as an effect of “parallax:” while users target by aligning
features on the top of the finger with the target, devices sense using the contact are,
which is a feature at the bottom side of the finger. We conclude that certain camera-
based sensing technologies can inherently be more accurate than contact area-based
sensing.

4.1 how do users acquire small targets using touch input?

As explained in Chapter 3, current touch technologies typically sense input locations by
reducing the contact area between the user’s finger and the device to its center. These
devices are thereby based on the implicit assumption that the contact area encodes the
information about the desired target in the first place, i. e., that users somehow use the
contact area to encode which target they are trying to refer to, e. g., by touching the
target with the center of the contact area.

Our findings in Chapter 3 seem to put this assumption into question. While the
contact area model is clearly plausible on a macroscopic scale, our findings with
very small targets have shown that touch input is subject to systematic error offsets,
which cause as much as two thirds of the overall inaccuracy of touch as shown in
Figure 3.7. When users target with an almost horizontal finger, for example, the target
position measured by a capacitive touch device is off by as much as several millimeters
(Figure 3.6)—on small screens devices, this is a substantial effect. In the studies we
presented in Chapter 3, the size and direction of the error offset was affected by a range
of parameters, including finger posture measured in roll, pitch, and yaw.

While we compensated for this effect using an elaborate scheme of corrective offsets
in the previous chapter (user- and finger-posture specific position adjustments), the
existence of these systematic offsets raises much deeper questions. In particular, the
existence of these offsets seems to indicate that the assumption these devices are built
on, i. e., that users target based on finger contact area, is wrong.

So if users do not touch targets based on contact area, how do they target? How do
they decide whether a finger is “on target” or whether it requires corrective moves?
We attempt to answer this question in this chapter.
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4.2 understanding touch input at microscopic scales

In order to help us specify what we are trying to find out, Figure 4.2 illustrates the
general concept of touch input: Users communicate a 2d target location to a touch
device. As users acquire a target with their finger, such as the shown crosshairs, they
effectively map the 2d target location into the 3d posture of their finger (a position
in 3d space, i. e., 3d position and 3d rotation). Due to the lack of a better term, we
will refer to this 2d-to-3d mapping as the user’s mental model of touch, in the traditional
sense of a user’s mental model of the way an object operates [108], but with the “object”
being the user’s own finger.

actual target

detected ůŽĐĂƟŽŶ

2D
ĚŝŵĞŶƐŝŽŶƐ�ŽĨ�ƚŚĞ�target

3D
ĚŝŵĞŶƐŝŽŶƐ�ŽĨ
ƚŚĞ�ƵƐĞƌ͛Ɛ�ĮŶŐĞƌ

uƐer
ŵĂƉƉŝŶŐ

device
ŵĂƉƉŝŶŐ

coŶtact area

Figure 4.2: When acquiring a target, here marked with 2d crosshairs, users effectively
map the 2d position of the target into a 3d position of their finger. Upon touch, current
touch devices sense the contact area between the finger and the surface and reduce it
to its 2d centroid to detect the input location. Devices thereby map the 3d of the user’s
finger back into the 2d coordinate system of the touchscreen.

The objective of any touch input device is to invert this mapping, i. e., to reconstruct the
2d target location from this 3d finger posture. We will refer to this 3d-to-2d mapping
as the device’s conceptual model. Perfect reconstruction is achieved if and only if the
mapping implemented by the touch device is indeed inverse to the 2d-to-3d mapping
implemented by the user, i. e., if the device’s conceptual model matches the user’s
mental model.

Current touch devices implement this back-translation as illustrated by Figure 4.2:
They observe the 2d contact area between finger and surface, and reduce it to its
centroid, from which they infer the 2d input location. As explained earlier, however,
our previous findings indicate that this contact area model is not correct, i. e., it does
not reconstruct the intended input position accurately. Apparently, users do not aim by
pointing using the center of the contact area.

Note: Throughout this chapter, we will use an apparatus similar to Figure 4.2, i. e.,
crosshairs marking the target. As discussed in Section 3.5, crosshairs performed indis-
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tinguishably from a dot target in our previous study, which suggests that the influence
of crosshairs onto users’ mental model of touch is reasonably small.

4.2.1 An Example and Preview of Findings

As a preview of our analysis, take a look at the sequence of images shown in Figure 4.1.
They show a user (Participant 7 from User Study 1 in Section 4.5) targeting a pair of
crosshairs with different finger angles. Looking across the sequence of images, we
may already catch some indication of what mental model of touch this user adheres
to. Certain geometric relationships between finger and crosshair seem to remain—
independent of what finger posture the experimenter makes this participant assume.

The participant shown in Figure 4.1 is a particularly good representative of the new
model of touch we propose, which we call the projected center model. This model says
that users align certain visual features with the target. In the shown example, it is the
horizontal center of the finger outline and the vertical center of the fingernail, which
the user is aligning with the target.

We chose the specific viewpoint of this image sequence with intent: Even though the
user’s head was actually located to the bottom left of the picture during these trials,
our findings suggest that users imagine this top-down perspective during touch input.
Based on this perspective, they decide whether their finger is on target or whether it
requires adjustment.

Under the projected center model, the error offsets of the contact area model

effectively disappear (they drop to 1.6 mm, compared to 4 mm for traditional, contact
area-based sensing), suggesting that the projected center model matches users’
mental model of touch very closely.

The projected center model also explains why capacitive touch input devices are
inaccurate: They implement the contact area model and thus infer input locations
based on features located at the bottom of users’ fingers. In contrast, users target based
on features located on the top/along the sides of their fingers. The inaccuracy of touch on
traditional touch devices is therefore an artifact of the parallax between the top and
bottom of a finger.

4.2.2 Approach

In the remainder of this chapter, we present a series of studies that validate the
reasoning outlined above.
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Many models in HCI are created by measuring a feature and fitting a function to it.
Unfortunately, we do not know yet what feature to measure or even what modality
(sense of touch, vision, and so on). This forces us to take a more general approach to the
problem [41]: (1) Guess the model, (2) compute the consequences, and (3) compare the
computation to experiment/observation. If it disagrees with experiment it is wrong.

We apply these three steps as follows: (1) Before we attempt to guess mental models,
we narrow down the search space. We conduct a series of interviews and then consider
only the subset of models that are based on features mentioned by participants. (2) The
consequences we predict are that models that match the user’s mental model will
feature error offsets approximating zero. (3) We conduct a series of pointing studies.
We measure error offsets as the average distance between the sensed input location and
the actual target location for the respective user (cf. offset in Chapter 3).

Since our primary goal is to understand touch, we require the remaining error offsets
of a good candidate model to be small. Only when the remaining offsets get reasonably
close to zero can we argue that the tested model indeed corresponds to the actual
mental model of the respective user and thus contributes to an explanation of touch.

4.2.3 Procedure

We proceeded in four steps.

Step 1—Interviews: We interview users to learn how they (think they) target using touch
input, i. e., what features they try to align with the target.

Step 2—Model creation: Based on participants’ input, we create a set of 7×7 candidate
models. User input inspires us to focus on models based on a top-down perspective.

Step 3—Filtering models: We conduct two touch pointing studies in which we determine
error offset for all candidate models under different variations of finger and head
postures. We eliminate models with large offsets, as they indicate a poor representation
of participants’ mental models. We keep 2×3 candidate models.

Step 4—Final evaluation: We conduct a final pointing study using the combined set
of independent variables from the studies in Step 3 (finger and head position) to
determine the error offsets and thus the “fit” of the remaining models.

4.2.4 Contribution

We make an attempt to understand the underlying, not directly observable mechanism of
touch input, one of the key technologies in human computer interaction. In particular,
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we explain why current touch devices are inaccurate by challenging the common
assumption that touch input is about the contact area.

Our findings inform the design of better touch input technology. They suggest that
devices that observe the outline or “projection” of a finger have the potential to offer
better touch precision than devices based on sensing the contact area between the
user’s finger and the device.

4.3 step 1: user interviews on target acquisition strategies

The purpose of this study was to learn more about users’ mental models by means of
an interview. While users are known to have limited ability of rationalizing low-level
activities, our goal was to create a selection of potentially relevant models and elements
that could be used to form a list of candidate models. We did not worry about incorrect
models at this stage, as we would eliminate these in subsequent steps of our process.

Figure 4.3: Before being interviewed, par-
ticipants first acquired targets printed on
a sheet of paper using various finger ori-
entations. They then reflected on how
they had acquired the target.

4.3.1 Task and Procedure

In order to help participants become aware of their mental models of touch input,
they started by repeatedly acquiring a target. As shown in Figure 4.3, the target was
marked by crosshairs drawn on a sheet of paper and each participant acquired it 50

times. Participants were instructed to place their finger such that it would “acquire a
tiny button located at the center of the crosshairs if the paper were a touch screen.”

To encourage participants to investigate their own mental models in more detail,
participants acquired the target using the five finger postures shown in Figure 4.4, i. e.,
combinations of finger pitch and roll. All participants completed this part of the study
in 10 minutes or less.
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Figure 4.4: Finger postures. Participants assumed these five different combinations of
finger pitch and roll, and then acquired the target during each trial.

After they had completed the trials, we interviewed participants about the strategies
they had used to acquire the target and based on what criteria they had decided when
their fingers were “on target.” We were careful not to use any terms that could bias
their answer, such as “contact area,” “fingertip,” “finger nail,” and the like. If they,
however, did mention “contact area,” we asked participants to draw the contact area in
four figures showing stylized fingers top-down held at four different angles.

4.3.2 Participants

We recruited 30 participants (5 female) from our institution. All participants were
between 19 and 29 years old.

4.3.3 Results

When asked to verbalize their “targeting procedure,” most participants hesitated. Four
participants insisted that they could not explain their behavior and “just touched the
target intuitively without giving it too much thought.”

Six participants stated right away that their experience with mobile touch-screen devices
had shaped their input behavior. While two of them understood how such devices
determine input coordinates, they all stated to aim based on experience with the device.
They all said that the device had “taught” them how to touch small buttons over time.

Contact Area

26 of the 30 participants said that they considered the contact area to be relevant to
their targeting strategy. 24 of them stated that they imagined the contact area between
their finger and the crosshairs and centered it on the target during the trials.



56 understanding touch: a new perspective

One said:

I could not see the contact area, so I imagined where it should be located. Then I
chose the center of it and positioned it on the target. That’s all.

Participants’ drawings of contact areas in the four figures supported our assumption
that they cannot fully rationalize their behavior. Most drawings largely clashed with
reality; while for a finger at a flat angle (15° pitch) the contact area extends fairly far
towards the user’s palm, participants always drew it too small. Similarly, for a rolled
finger (90°), participants drew the contact area too large and mostly centered inside
the finger, whereas in fact it is mostly offset horizontally and rather short.

Three participants mentioned a special version of contact area; they claimed to touch
the target with the part of the finger that “comes down first.” Five other participants
explained that they placed their finger such that it applied the maximum amount of
pressure to the target.

Visual Feedback

13 participants reported that they positioned their finger using visual control. They
stated that they mentally connected the crosshairs under their finger and tried to move
their finger such that the target was always located under the same position inside
their finger.

One said:

I can see my fingertip and imagine where the crosshairs intersect. So I can visualize
the bottom of my finger and always position it at the same location.

Nine participants explained that they positioned the finger such that the target was
located at a certain distance from the edge of their fingernail. Four other participants
said they imagined a virtual 3d point inside their finger, which they repeatedly sought
to position directly above the target. Two other participants said that they “projected”
a feature in their finger down to the table and then aligned it with the target. This
is an interesting observation, because such a projection is a comparably complex 3d

operation that requires users to take head parallax into account.

Figure 4.5: One participant targeted by
placing a bright spot on his nail over the
target.

ďƌŝŐŚƚ�ƐƉŽƚ
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Two participants described their targeting strategy as “cheating.” Both had a visible
spot on their fingernail as shown in Figure 4.5. Both said that they used the feature to
be more accurate and vertically aligned it with the target whenever finger roll was 0°.
For roll different from 0°, they stated that they still aligned the spot on their nail with
the horizontal line of the crosshairs.

4.3.4 Discussion

While the study allows proposing a wide range of possible models that explain how
participants targeted, such as models based on a camera that tracks with the user’s
head, we decided to make an educated guess and limit our search for candidate models
to those based on features that users can perceive visually and from directly above. This
seemed plausible given that thirteen participants mentioned visual features and six of
them mentioned some sort of vertical projection.

As discussed earlier when stating our 3-step approach, whether or not our intuition
was right would have to be determined in the following pointing studies. If the model
should perform poorly, our guess would turn out to be wrong and we would have to
come back and restart the process with another model (note how this is different from
phenomena that lend themselves to direct observation, in which case the interviews
themselves would have already answered the question).

4.4 step 2: picking candidate models

We constructed the following two families of candidate models: (1) contact area,
which had produced a good fit for one user in our previous study in Chapter 3,
Section 3.3, shown as Participant 3 in Figure 3.5 and (2) models based on features of
human fingers that are visible from above. We implemented this by tracking users’
fingers using a camera placed directly above the crosshairs on the touchpad.

Figure 4.6 shows a series of features that we found to be visible from above. We
classified them as horizontal features if they might help determine the finger’s horizontal
position and vertical features if they might help determine the finger’s vertical position;
some features, such as the corner of the fingernail are both (e. g., nail left and nail
groove). Note the 3d nature of the finger, which causes features, such as outline center
to refer to the outline of the skin for some levels of finger roll and to the outline of the
nail for other levels of finger roll.

In theory, users’ mental models might combine any number of features in arbitrarily
complex ways. We felt, however, that the effortlessness of touch pointing suggests
that only simple models are truly plausible. We therefore only included models that
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Figure 4.6: We found these horizontal and vertical features to be detectable on a human
finger. We used them to construct candidate models that predict input locations.

use a single feature (such as nr for the mental model of users who aim relative to the
right edge of their nail) and models that refer to the center point between two features,
such as sl|sr for the mental model of users who aim relative to the center point of the
finger’s outline, i. e., between “skin left” and “skin right.”

We will refer to terms such as nr or sl|sr as half models, because it takes two of them to
describe the mental model of a user—one for x and one for y. To avoid the overhead of
evaluating the cross product of horizontal and vertical features, however, we keep these
two classes of features and models separate throughout most of this chapter and will
not combine them until the final study.

Figure 4.7 lists the horizontal and vertical half models that we created from the
respective features shown in Figure 4.6.

Ɛů Ŷů ocŶƌ Ɛƌ Ɛl|Ɛr Ŷl|Ŷr

t Ŷƚ bŶŐ t|b Ŷƚ|b ŶŐ|b ĐŽŶƚĂĐƚarea

ĐŽŶƚĂĐƚarea

ŚŽƌŝǌŽŶƚĂů�ŚĂůĨͲŵŽĚĞůƐ

ǀĞƌƟĐĂů�ŚĂůĨͲŵŽĚĞůƐ

Figure 4.7: (a) 7 horizontal half models based on the features in Figure 4.6, plus the
contact area model. (b) 7 vertical half models (plus the contact area model).

The idea behind a half model, such as “nail right” was not necessarily that participants
would place this specific point over the target, but some point that is located at an offset
from this feature. To include this concept, we complemented all half models with a
single user-specific offset (unlike our previous approach in Chapter 3, which allowed
for one offset per finger angle).
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4.5 step 3: eliminating models

Next we eliminated those (half) models that did not match the mental models of any
users. In order to do so, we conducted a touch pointing study. Using a camera above
the target, we recorded participants as they repeatedly acquired a target on a capacitive
touch pad. We then tried to “explain” the observed data using each of our half models
and eliminated all half models that did not fit any participants.

To keep the overall number of repetitions manageable, we broke this study down into
two individual studies. The first study tested twelve combinations of roll and pitch;
the second tested only four combinations of roll and pitch, but varied head position in
addition.

4.6 step 3a : eliminating models using roll and pitch

4.6.1 Task

Participants repeatedly acquired a crosshair target located on a touchpad (Figure 4.8).
During each trial, participants first touched a 1

′′×1
′′ “start” button located 2

′′ left of the
target. Participants then assumed the finger angle for the current condition with their
right index finger and acquired the target. Participants committed the touch interaction
by pressing a foot switch. This recorded the touch location reported by the touchpad,
triggered the camera to take a picture, played a confirmation sound, and completed
the trial. Participants did not receive any feedback about the location registered by the
touchpad.

Figure 4.8: Participants acquired a
crosshair target located on a touchpad
and committed input using the foot
switch. The overhead camera recorded
participants’ fingers upon touch.

We took the following four measures to minimize the impact of other potential factors.
First, participants kept their head in a fixed position above the touchpad, as shown
in Figure 4.8. This controlled for parallax. Second, the crosshairs marking the target
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extended beyond participants’ fingers, allowing participants to maintain a certain
amount of visual control during targeting. Third, the use of a foot switch to commit
input allowed us to avoid artifacts common with other commit methods, such as
inadvertent motion during take-off. Fourth, participants rested their elbow on the
adjacent table (Figure 4.8) to preclude fatigue. Finally, participants were told to use as
much time as necessary and that task time would not be recorded.

Note that there was no need to include distracter targets. Distracters have a major
effect on adaptive input techniques, but not on unmodified touch.

The purpose of using crosshairs was to reduce noise, thus helping us observe the
underlying mental models more clearly. While the use of visible crosshairs may in
theory impact participants’ targeting behavior, we did not observe any such effect in
our studies.

4.6.2 Independent Variable: Finger Posture

As shown in Table 4.1, we used the same combinations of finger pitch and finger roll as
we did in the previous chapter. However, we dropped the 90° pitch condition, because
the camera located directly above the pad could not capture the participant’s nail in
this condition (Figure 4.8).

-15°ƉŝƚĐŚ
roll

65°

45°

25°

15°

0° 15° 45° 90°

x x x x x

x

x

xx x x x

Table 4.1: Study conditions. Participants assumed these combinations of finger pitch
and finger roll rotations during the study and then acquired the target on the touchpad.

4.6.3 Procedure

Participants performed a sequence of 12 angles × 2 repetitions totaling 24 trials for
each participant. The order of pitch-roll combinations was counterbalanced across par-
ticipants. After completing the trials, participants filled out a post-study questionnaire.
All participants completed the study in 15 minutes or less.
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4.6.4 Apparatus

Our study apparatus recorded the contact area of each touch using a capacitive touch
pad and captured a picture of the participant’s finger using an overhead camera. The
capacitive pad was a 6.5′′×4.9′′ FingerWorks iGesture pad; the camera was a Canon EOS
450D, capturing participants’ fingers at 140 dpi. Participants committed trials using
a Boss FS-5U foot switch. All components were connected to an Intel Core 2 Duo
machine running Windows XP.

4.6.5 Participants

We recruited a new set of 30 participants (10 female) from places around our institution.
Participants were students from a range of different disciplines and were between 20

and 32 years old. We offered a e 20 incentive for the most accurate participant.

4.6.6 Data preparation

We manually annotated the visual features in all pictures that were taken by the camera.
During a pilot study, we attached markers to participants’ fingers in order to allow for
automated tracking. However, participants mentioned that the markers distracted them.
Since some participants had started to include them as features into their targeting
model, we decided to drop the markers in favor of manual annotation.

4.6.7 Results

Vertical half models

Figure 4.9 (left) shows which vertical half models produced the best fit (i. e., the lowest
error offsets) for how many participants. We consider a half model to produce the best
fit if the systematic offsets produced by this half model for each condition have the
smallest distance from the center of mass of all error offsets produced by that model,
across all half models.

No single model offers the best fit for all users, suggesting that different users may
have different mental models. The half model t|b, i. e., the vertical center of the
fingernail performs best here—it offered the best fit for 9 participants. It is followed by
ng|b, a slightly different version of the vertical center of the fingernail, with another
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Figure 4.9: Left: Number of participants for which each vertical half model produced
the lowest error. Right: Error produced when using only a subset of the half models
to analyze participants. Switching from the model contact area to t|b reduces
error offsets to 44%; using all models listed on the left side reduces the error to 37%
compared to the contact area model.

6 participants. As expected based on Figure 3.5, the contact area model offers the
best fit for a very small number of participants, here only 1 out of 30.

Figure 4.9 (right) shows how well different subsets of vertical half models combined
fit the data. Bars represent the average vertical error offset if participants’ data is
processed using only the respective half models. The red bar on the left represents the
error offsets produced by the capacitive baseline condition contact area.

The green bar on the right in Figure 4.9 (right) represents the error offsets produced
if every participant’s input were processed using their personal best-fit model from
Figure 4.9 (left); the switch to the best fit model reduces the error offsets by about 63%.
We will refer to this best-fit case as “per-participant models.”

Some of the half models listed as best fit model are similar. As a result it may not be
necessary to maintain all of them. The gray bars in the middle of Figure 4.9 (right) show
how error rate increases if we drop some of the half models. We see that dropping all
but three models (t|b, nt and ng|b) incurs a penalty of only 5% compared to using
all vertical half models. Dropping all models but t|b incurs a penalty of 18.5% over
the best-fit case. The contact area model alone, however, leads to large error offsets
(averaging 3.75 mm across participants).

Horizontal half models

Figure 4.10 (left) shows the corresponding data for the horizontal half models. The half
model oc (center of the finger outline) produced the lowest error for over a third of
the participants (11 of 30). The contact area model offered the best fit for 5 of the
30 participants.

The benefit of using per-participant models is only a factor of 1.4 (Figure 4.10 right)
and, thus, by far not as large as in the vertical case . This is a result that we expected
based on the results in the previous chapter, because of the smaller horizontal extent
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Figure 4.10: Left: Number of participants for which each horizontal half model pro-
duced the lowest-error offsets. Right: Using per-participant half models reduces the
error offsets on average to 84% compared to using merely the contact area model.

of clusters in Figure 3.5. Horizontal error has always been smaller, thus there is less
potential for improvement.

4.6.8 Discussion

These findings suggest that the horizontal half model nl (Figure 4.10 left) and the
vertical half model ng (Figure 4.9 left) can be eliminated, as they did not produce a
best fit for any participant. However, we will postpone the decision until we have seen
results of the next study.

4.7 step 3b : eliminating models : head parallax

In contrast to the study in Step 3a, we added head parallax as an independent variable
in this study. Again, the purpose of this study was to eliminate candidate half models.

4.7.1 Task

The task was the same as in the previous study, except that in addition to assuming
a specific finger posture, participants also assumed one out of four predefined head
positions shown in Figure 4.11.

4.7.2 Procedure

Each participant completed a sequence of 2 pitch angles (15° and 45°, see Table 4.1) ×
2 roll angles (0° and 45°) × 4 head positions (Figure 4.11) × 2 repetitions = 32 trials, in
four blocks, one for each head position. Finger angles as well as head positions were
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aboveůĞĨƚ obliqueďĞŚŝŶĚ

Figure 4.11: Participants acquired the target while assuming one of these four different
head positions.

counterbalanced across participants. Participants filled out a post-study questionnaire.
All participants completed the study in about 20 minutes.

4.7.3 Participants

We recruited a fresh set of 12 participants (5 female). All participants were between
19 and 24 years old. Similar to the previous study, we encouraged participants to be
accurate throughout all conditions. Again, we offered a e 20 incentive for the most
accurate participant.

4.7.4 Apparatus

The apparatus was the same as in the Study 3a (Figure 4.8).

4.7.5 Results

Vertical half models

As in the previous study, the half models describing the vertical center of the fingernail
together (t|b and nt|b) produced the best fit for half of all participants (6 of 12,
Figure 4.12 left). The contact area model, in contrast, never produced the lowest-
error offsets for any participant in this study.

Again, we can reduce the number of half models without sacrificing too much precision;
keeping only the vertical model t|b incurs a penalty of 6.5% over using all vertical half
models. It still reduces the error of the contact area model by a factor of 2.5.
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As shown in Figure 4.12 (right), the use of per-participant best-fit half models reduced
the error offsets to 1.8 mm, from 5 mm of the contact area model to 40% of that
value.
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Figure 4.12: Left: Number of participants for which each vertical half model produced
the lowest error. Right: The mean error of input drops to 39% when using t|b instead
of contact area.

The contact area model incurs even bigger error offsets than in the previous study
(5 mm compared to 3.75 mm). This suggests that the contact area model is sensitive
to changes in head parallax, but more data is required to know for sure.

Horizontal Half models

As in the previous study, the horizontal half model oc produced the best fit for the
largest number of participants (7 of 12, see Figure 4.13 left). Compared to the previous
study, the contact area half model produced the best fit for a similar fraction of all
participants (here 1 of 12, compared to 5 of 30).
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Figure 4.13: Left: Number of times each of the horizontal models produced the lowest-
error offsets per participant. Right: The average error produced by the horizontal
best-fit models sinks to 72% compared to contact area. The three horizontal half
models oc, sl|sr, and t|b alone account for this improvement.

As in the previous study, the use of per-participant half models produced only a
moderate reduction of error offsets over the contact area model (about 15%).
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4.7.6 Discussion

Figure 4.14 lists the remaining candidate half models. We obtained this list by eliminat-
ing all models that did not produce at least one best fit in either one of the two studies.
In addition, we eliminated all models whose addition would have decreased the error
only marginally—the benefits of including nr, ng|b, and nt|b in the last study, for
example, were less than 1%. However, we did maintain the two halves of the contact

area model as well as the model t (absolute distance from the fingertip, which also
only reduced error by less than 1%): both have been implemented in products and
related work, so we wanted to see how they perform in the final study.

oc Ɛl|Ɛr ĐŽŶƚĂĐƚ�ĂƌĞĂ

ŚŽƌŝǌŽŶƚĂů�ŚĂůĨ�ŵŽĚĞůƐ

t|b

ǀĞƌƚŝĐĂů�ŚĂůĨ�ŵŽĚĞůƐ

ĐŽŶƚĂĐƚ�ĂƌĞĂtŶƚ

Figure 4.14: The remaining candidate models after elimination.

If we take a closer look at the three remaining horizontal half models, we notice that
all of them are versions of the center of the finger outline, only sampled at different
locations, i. e., at the bottom of the nail (oc), at the location of the nail grooves (sl|sr),
and at the horizontal center of the contact area.

The three remaining vertical half models describe the target location either in relation
to the fingernail (t|b) or as an offset from the top of the fingertip (t and nt).

4.8 step 4: evaluating the remaining models

The purpose of this final study was to evaluate the remaining half models. We could
not re-use the data from the previous studies, because we had already used this data
for learning and eliminating the very same half models. More importantly, though,
participants had performed only few trials per condition; thus the data did not allow us
to distinguish error offsets from random noise (i. e., spread by the fat finger problem).

In this final study, we addressed this by increasing the number of repetitions to four
trials per condition and extending the study to two blocks. Aggregating these eight
trials substantially reduced fat finger noise and thus revealed the systematic error
offsets we were looking for more clearly. These offsets provided us with a more reliable
estimate sense of how far a change in mental model could reduce offsets and thus how
closely the respective models were actually matching participants’ mental models of
touch.
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4.8.1 Task

The task was the same as in the previous study (Section 4.7); we included all 12 levels
of finger pitch and roll from Study 3a and all head positions. To keep the number of
repetitions per participant manageable, we subdivided the roll/pitch variables between
subjects, as shown in Table 4.2.

-15°ƉŝƚĐŚ
roll

65°

45°

25°

15°

0° 15° 45° 90°

2 1 2 1 1

2

2

12 2 1 1

Table 4.2: To keep the number of trials per participant manageable, we ran roll/pitch
between subjects. The table shows the assignment of conditions to the two groups.

4.8.2 Study design

Each participant completed 6 combinations of finger angles (Table 4.2) × 4 head
positions (Figure 4.11) × 2 blocks × 4 repetitions = 192 trials. All participants completed
the study in 40 minutes or less. Participants filled out a questionnaire afterwards.

4.8.3 Apparatus

The apparatus was the same as in Study 3b (Figure 4.8).

4.8.4 Participants

We recruited a fresh set of 12 participants (6 female) from places around our institution.
All participants were between 21 and 32 years old. As in the previous studies, we
encouraged participants to be accurate and offered a e 20 incentive for the most precise
participant.
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4.8.5 Results

The final study did not produce anything unexpected as the performance of the
participating half models was similar to the previous two studies. As shown in
Figure 4.15 left, both oc and sl|sr produced the best fit for 5 of the 12 participants;
t and t|b produced the best fit for 5 participants each. While the use of all three
horizontal half models yields only 15% less error in offsets (per-participant models),
vertically, per-participant models reduce the error offsets substantially by 60%. t|b

alone reduces error offsets by a factor of 2.5 compared to contact area (Figure 4.15

right).

ŚŽƌŝǌŽŶƚĂů�ŚĂůĨ�ŵŽĚĞůƐ ŚŽƌŝǌŽŶƚĂů verticalǀĞƌƚŝĐĂů�ŚĂůĨ�ŵŽĚĞůƐ

t
5 Ŷƚ

1

t|b
6

0 mm

2 mm

4 mm

6 mm

8 mmoc

7 Ɛů|
Ɛƌ

3
ĐŽŶƚĂĐƚ�ĂƌĞĂ
2

ďĞ
Ɛƚ
�Ĩŝ
ƚ�

ĐŽ
Ŷƚ
ĂĐ
ƚ�Ă

ƌĞ
Ă

t|
b

t|
b,

t

oc ŽĐ
͕�Ɛ
ůͮ
Ɛƌ

ŽĐ
͕�Ɛ
ůͮ
Ɛƌ

ďĞ
Ɛƚ
��Ĩ
ŝƚ�
��;
Ăů
ůͿ

ďĞ
Ɛƚ
��Ĩ
ŝƚ�
��;
Ăů
ůͿ

ĐŽ
Ŷƚ
ĂĐ
ƚ�Ă
ƌĞ
Ă�

ĐŽ
Ŷƚ
ĂĐ
ƚ�a

re
a 

Figure 4.15: Left: Number of times each of the horizontal and vertical models produced
the lowest error, respectively. Right: Using the best-fit horizontal half models instead of
contact area reduces the error by 15%. Vertical per-participant models reduce the
error produced by contact area by 60%.

4.8.6 Merging Models

Finally, we rejoined half models into full models. Table 4.3 shows which half models
went together well: The combination oc & tb produced the best overall fit for 4 of the
12 participants, followed by oc & t, sl|sr & t|b, and contact area & t|b for another
2 participants each.
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Table 4.3: Number of times a combination of half models together produced the best fit
and the lowest overall input error for a participant.
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Figure 4.16 shows error offsets for the eight full models from Table 4.3. A one-way
ANOVA with participant as a random variable found a significant main effect of model

on error offsets (F7 = 38.662, p < 0.001). Post-hoc t-tests using Bonferroni correction
found that all six other models and the per-participant best-fit aggregate produced
significantly lower error offsets than contact area (all p < 0.003).
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Figure 4.16: Size of the remaining offset for the combined full models from Table 4.3
compared to the contact area model (± std. error of the mean).

The best individual model was oc & t|b. It says that participants target by placing
the horizontal center of their finger outline and the vertical center of fingernail over
the target. In the beginning of this chapter, we already referred to this model using
the name projected center model and the images shown in Figure 4.1 are best explained
using this model.

In summary, the projected center model performed best out of all the models tested.
Under the projected center model, the large systematic offsets of 4 mm observed by
the contact area model shrink down to 1.6 mm, an improvement by a factor of 2.5.
At the same time, the remaining offsets are close enough to zero to suggest that this
model approximates participants’ mental model indeed well.

4.9 applying the results to make more accurate touch devices

In order to incorporate the findings from the previous studies into a touch device that
senses input with high precision, we analyze which models they need to implement to
redeem the effects we observed.

4.9.1 Adding Error Spread to Infer Minimum Button Sizes

So far, we have discussed models based on systematic offsets, as it is a good metric for
testing the quality of mental models. To answer questions about device performance,
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we add the other error variable, i. e., spread, back in. The resulting minimum button
sizes for 95% reliable touch input are shown in Figure 4.17. These values specify how
accurately a device based on the respective model can be expected to perform.
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Figure 4.17: Results from this study in terms of minimum button sizes. We juxtapose
our results to the results of our studies that we reported in Chapter 3.5.

The chart shows that devices based on the projected center model allow users to
acquire targets of 4.9 mm with 95% accuracy, compared to 7.9 mm target size for the
corresponding contact area model (8.6 mm in Figure 3.5, corrected for yaw to match
conditions in this study). In terms of target surface, this difference amounts to a factor
of 2.6. This means that a device implementing the projected center model could
pack 2.6 times more targets into the same screen space or, alternatively, that a device
could be reduced to less than half its size and still allow users to operate it reliably.

For reference, in Figure 4.17 we also included the 4.3 mm minimum target size that
we previously achieved by attaching retro-reflective markers to the user’s finger and
tracking it using an optical tracking system as described in Section 3.5. Based on
600 repetitions of training data, it removes all known offsets, so that this model can
be considered a current lower bound for touch accuracy. In comparison, the 4.9 mm
minimum button size of the calibration-free projected center model gets surprisingly
close.

4.10 high-precision touch input using camera-based touch detection

In order to implement the projected center model, a device needs to be able to
reliably locate a user’s fingernail, which is technically challenging.

Figure 4.17 points out an alternative. At a minimum button size of 5.35 mm, the model
oc & t does not quite reach the 4.9 mm of the projected center model. However,
it is comparably easy to manufacture, as this approach only requires locating finger
outlines in a camera positioned above the target, namely the outlines of the sides and
the top of the finger.

Touch detection using an overhead camera has already been explored in a number of
research prototypes, such as CSlate [2] or LucidTouch [165]. Our findings suggest that
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this track of engineering, combined with sufficiently accurate cameras, could be a more
promising approach to high-precision touch sensing than the currently more widely
available devices based on sensing the contact area.

We present one such prototype that infers touch events using an overhead camera.
Although designed for a different purpose than input precision, the Imaginary Phone
implements the findings presented in this chapter by inferring input on the user’s own
body using the visual model oc & t.

Imaginary Phone: Shortcut Touch Interaction Using a Wearable Camera

The Imaginary Phone is a device that senses touch input on the user’s body using
an overhead camera. The device thereby implements a visual model to derive input
locations.

The purpose of Imaginary Phone is not input precision but shortcut interaction with
mobile devices users carry in their pockets as shown in Figure 4.18, here an Apple
iPhone. Users interact by mimicking the use of the physical phone using touch input
on their own empty hand. The Imaginary Phone tracks all touch interaction and
forwards touch events wirelessly to the physical mobile phone, where they invoke the
corresponding actions. The physical device supplies feedback to operations via the
built-in speaker or a wireless headset worn by the user.
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Figure 4.18: The Imaginary Phone detects touch input on the body using an overhead
camera and implementing a visual model for touch detection. Left: This user operates
his iPhone in his pocket through touch input on his palm, which can be used in place
of the physical phone. The depth camera tracks all touch interaction on the body and
sends input events to the physical device where it triggers the corresponding function.
Right: Example scenario of making a call with the Imaginary Phone: (a) unlock with a
swipe, (b) enter your pin, (c) select the ‘phone’ function and (d) select the first entry
from the speed dial list.
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Our prototype allows the user to perform everyday tasks, such as picking up a phone
call or launching the timer app and setting an alarm. Imaginary Phone thereby serves
as a shortcut that frees users from the necessity of retrieving the actual physical device,
for example in situations where the physical phone is out of reach.

4.10.1 Sensing Hardware

Imaginary Phone uses a depth-sensing camera to observe the user’s hands during
interaction as shown in Figure 4.18 (left). The camera currently looks over the user’s
shoulder, but future versions will be wearable and attached to the user’s shirt. We
use a time-of-flight depth camera to implement the Imaginary Phone, which allows
it to work indoors as well as outdoors and thus support mobile use. The camera is a
PMD[vision] CamCube that provides frames at 40 Hz with 200 × 200 px resolution as
shown in Figure 4.19a.

4.10.2 Algorithm

In order to extract the two hands from the input image, we pre-process the raw
depth image as shown in Figure 4.19a. We first find the closest pixels in the depth
image (b), remove all pixels with relative depth values of more than 30 cm, and smooth
all remaining values. To determine the number of visible hands, we create a depth
histogram of the masked image (c) and calculate the number of strong peaks (indicated
by green squares in Figure 4.19c). Based on the two distributions in the histogram, we
classify pixels in the depth image (d) to obtain the masks for the pointing hand (e) and
the reference hand’s palm (f).

a cb d e f g

Figure 4.19: (a) In processing the raw depth image, our system (b) thresholds the
image and (c) calculates a depth histogram to (d) segment the image into two masks:
(e) pointing hand and (f) reference hand. From that we calculate (g) the final touch
position and reference frame. This location is then forwarded to the physical device.

To determine if and where the user is touching the palm, we pick a location inside the
pointing hand (Figure 4.19e) and fill using a small tolerance value, eventually “walking
down” the finger towards the reference hand (f). If the fill does not reach a depth value
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that belongs to the reference hand while staying within the tolerance value, we infer
no touch. If it does, we infer that the finger is touching.

To determine the location of the touch event, we look for the tip of the user’s finger
as described by the model oc & t. Due to the limited resolution of the depth camera,
however, the previous flood-fill operation does not precisely yield the location of the
fingertip. We therefore derive that location on the user’s finger that is sufficiently
different from the depth values of the reference hand. In real-world coordinates, this
amounts to a difference in depth of about 2 cm. Since the location on the finger that
is 2 cm closer to the camera is “farther up” the user’s finger, we determine the final
touch location by adding a small vector in the direction of the finger (green square
in Figure 4.19g). During our tests, this procedure obtained the position of the user’s
fingertip with sufficient accuracy to target home-screen buttons reliably.

To obtain a frame of reference for all touch-input events, we use a bounding box around
the the palm’s fingers excluding the thumb. We first calculate the width from the top
3 cm of the hand to exclude the thumb (the depth values allow translating this into
pixels measurements) and draw a frame around those values. We then set the height of
this reference frame to match an aspect ratio of 1.5, which corresponds to the aspect
ratio of an iPhone 4. The final frame is shown in Figure 4.19f and g. As this reference
frame is subject to noise if the pointing hand is present, we update the reference frame
only if one hand is visible and, upon sensing both hands, adapt it by tracking the
reference hand.

As the computed raw locations are subject to strong noise, we use hysteresis to maintain
touch states (touch/no touch) and smooth input coordinates, which enables smooth
dragging or even free-form drawing. This also prevents processing inadvertent input,
such as a hand waving by the camera. Our system supports all of the same single-touch
interactions that are possible on the phone: swiping, scrolling, tapping, dragging,
drawing, and the like.

After determining the touch position on the palm, our prototype relays touch input
to an iPhone. A custom-written input daemon on the iPhone receives the smoothed
events via TUIO over WiFi and injects them into the event stream of the iPhone. The
VoiceOver accessibility mode built into Apple iOS 4.0 and greater provides auditory
confirmation of actions. The built-in unlock gesture on the iPhone, designed to prevent
inadvertent touch input, additionally helps our system to disregard spurious input
through gestures that happen naturally when not using the system.

In summary, the Imaginary Phone implements touch interaction on the body using
an overhead camera. Our system thereby implements a visual model to infer touch
locations and forwards them to the actual device to invoke commands.
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4.11 conclusions

In this chapter, we conducted an exploration of users’ mental models of touch. The
fact that under the proposed projected center model the error offsets found by our
work in Chapter 3 essentially disappear suggests that this model is likely to closely
match how users proceed while acquiring a target on a touch device. Our findings
suggest that systems that track fingers using cameras from above have the potential for
substantially better pointing accuracy than contact-area-based sensing as currently
implemented.

In order to translate the results from this chapter into prototypical implementations for
high-accuracy touch sensing, we have two options. Either we switch to an overhead
perspective and implement touch recognition based on visual features using a camera,
such as the Imaginary Phone in the previous section in conjunction with a high-
resolution camera; or we maintain contact-based touch recognition as implemented
on all of today’s mobile devices, reconstruct the user’s finger in 3d from the 2d touch
contact, and use that to make touch accurate.

The devices we presented in previous chapters accomplished 3d reconstruction, yet
they were input-only. In the next chapter, we present a fully interactive touchscreen
that reconstructs 3d information from all touch contacts while providing output on the
same surface.
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F I B E R I O : A T O U C H S C R E E N T H AT S E N S E S F I N G E R P R I N T S

This chapter is based on results published in [70, 129].

webcam 
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Figure 5.1: Fiberio is a rear-projected tabletop system that captures users fingerprints
during touch. Left: Fiberio is displaying a region of its high-resolution raw input
image, revealing the fingerprint of the finger. The key that allows Fiberio to display an
image and sense fingerprints at the same time is its screen material: a fiber optic plate.
Right: This fiber optic plate replaces the diffuser in Fiberio’s configuration, which is
otherwise a standard diffuse illumination setup.

The results we presented in the previous chapter further support our new perspective
on touch input: To infer input locations accurately, the user’s finger has to be considered
in 3d.

In Chapter 3, we described how touch devices may reconstruct 3d information from
the 2d contacts they observe. While our prototype Ridgepad achieved this by resolving
touch contacts at a fingerprint level, the device itself was input-only and could not
support the tasks of today’s touchscreen devices.

In this chapter, we present Fiberio, a rear-projected multitouch table that observes
users’ fingerprints during interaction (Figure 5.1). Fiberio extracts users’ fingerprints
to biometrically identify them and reconstruct 3d information during each touch
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interaction. Both, input and output thereby appear on the same surface, allowing
Fiberio to be a fully interactive touchscreen.

Fiberio accomplishes projection and fingerprint sensing on the same surface using a
new type of screen material: a large fiber optic plate as shown in Figure 5.1. The plate
diffuses light on transmission, thereby allowing it to act as projection surface. At the
same time, the plate reflects light specularly, which produces the contrast required for
fingerprint sensing.

As a side effect, Fiberio offers all the functionality known from traditional diffused
illumination systems. More importantly, Fiberio is the first interactive tabletop system
that authenticates users during touch interaction—unobtrusively and securely using
the biometric features of fingerprints, which eliminates the need for users to carry
identification tokens.

5.1 fingerprint scanning and projecting images on the same surface

The challenge of scanning fingerprints on a surface that simultaneously functions as a
display for projected images boils down to two contradicting requirements with respect
to the screen material. On the one hand, the screen has to reveal fingerprints, i. e.,
produce contrast between the ridges and valleys of the fingerprint. Known solutions
require a specular screen surface to accomplish optical fingerprint scanning. On the
other hand, to be used as a display, the screen has to allow the rear-projection to
produce a visible image, which requires the screen material to be diffuse. Unfortunately,
specular and diffuse are contradictory requirements for such a surface.

These contradictory requirements eliminate a number of candidate technologies that
appear suitable at first glance. Tabletops based on frustrated total internal reflection [58],
for example, cannot generate the contrast between fingerprint valleys and ridges and
thus do not afford scanning users’ fingerprints with sufficient quality.

In this chapter, we demonstrate how to resolve this contradiction. Our prototype
Fiberio is a multitouch table that recognizes fingerprints during touch interaction. As
shown in Figure 5.1, Fiberio scans the user’s fingerprint upon touch, identifies the
user during interaction and projects output onto the tabletop surface. Building on the
concepts in Chapter 3, Fiberio also reconstructs the user’s 3d finger pose from the 2d

fingerprint it observes.
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5.2 fiberio’s solution : a large fiber optic plate as the surface

Figure 5.1 (right) shows Fiberio’s hardware configuration, which is essentially a diffused
illumination setup [96]: a 19

′′ screen (diffuser), a projector that rear-projects onto the
screen, an infrared illuminant that illuminates the screen from behind, and cameras
that observe touch input on the screen.

What distinguishes Fiberio from a regular diffused illumination setup is the nature of
the diffuser: At first glance, Fiberio’s diffuser appears like a sheet of frosted glass, but it
is a 3 mm thick, 4233 dpi fiber optic plate. Its 40 million optical fibers run perpendicular
to the surface and transmit light between the top and the bottom of the screen. Such
plates, typically marketed for shielding CCD sensors from X-ray radiation in medical
applications, are being produced in large numbers today and we repurpose them
without modification in our prototype.

In Fiberio, the fiber optic plate resolves the aforementioned contradiction. As we
describe in detail in Section 5.4, the fiber optic plate (1) diffuses light on transmission.
This causes the light coming from the projector located below the screen to scatter,
allowing users to see the image on the surface from all locations around the table.
(2) With the correct illumination setup, the fiber optic plate creates a specific type
of specular reflection: frustrated Fresnel reflection, which is different from the type of
reflection used in FTIR-based tabletop systems. This setup causes the infrared light
that illuminates the plate from below to produce a visible contrast between fingerprint
ridges and valleys, which allows the high-resolution infrared camera below the table
to capture fingerprints (Figure 5.1 right). Because of the fiber optic plate, Fiberio is
capable of simultaneously displaying images and capturing fingerprints.

5.3 background : optical fingerprint sensing

In order to record fingerprints, a camera needs to produce sufficient contrast between a
fingerprint’s ridges and valleys. Existing diffused illumination systems do not produce
this contrast, because the skin of the user’s finger diffusely reflects light and because
the system’s diffuser further blurs those reflections, thereby discarding all the structural
details [96].

5.3.1 Prism-Based Fingerprint Scanning Yields Excellent Contrast

As shown in Figure 5.2, prism-based fingerprint scanners achieve excellent contrast by
shining light through a light diffuser and into a large solid glass prism [173]. (a) Since
the light hits the top surface at an oblique angle, any blank part of the surface reflects
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the light directly into the camera, causing such areas to appear bright. (b) Whenever
human skin touches the surface (i. e., the ridges of the fingerprint make contact), the
light reflection is frustrated. That is, the light exits the prism and enters the finger,
where the skin diffuses the light. Thus, little to no light reaches the camera, causing
fingerprint ridges to appear dark in the image. The fact that valley locations reflect light
whereas ridges absorb it produces a stark contrast, allowing such devices to capture
fingerprints that are high in quality and high in contrast.

skin
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illuminant

camera prism
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Figure 5.2: Left: Optical fingerprint scanners produce crisp contrast between fingerprint
ridges and valleys using a prism, strong illumination that enters the prism and a
camera on the opposite side to capture reflections. Right: Rays from the illuminant
are totally reflected at the prism surface, (a) causing such locations to appear bright
as the camera sees directly into the light source. (b) Light escapes the prism (i. e., the
reflection is frustrated) where fingerprint ridges touch the surface, causing ridges to
appear dark.

Unfortunately, prism-based fingerprint scanning cannot be integrated into touchscreens,
because the prism construction does not allow these devices to produce visual output.
The reason is that, as discussed above, the prism-based design requires a specular
surface; projection, however, can only image on a diffuse surface.

5.3.2 Touchscreens Based on FTIR Cannot Sense Fingerprints

As mentioned in Section 5.1, touchscreens based on frustrated total internal reflec-
tion [58] cannot be enabled to capture fingerprints. The primary reason is that such
systems employ compliant surfaces to act as diffusers and at the same time facilitate
sensing touch input. Their structure is coarse, however, which dampens touch input to
the extent that fingerprint ridges cannot leave distinct impressions on the waveguide.
Such surfaces thus blur all the details required for fingerprint sensing.

Even if we eliminate the light-diffusing property of the surface (e. g., by using a
switchable diffuser [73]), the design of FTIR will still not produce the contrast required
for fingerprint scanning. Figure 5.3 illustrates such a device without a compliant
surface. When the finger touches the surface, the light escapes the waveguide and
enters the ridges of the fingerprint. (b) The finger’s skin, however, diffuses the light at
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Figure 5.3: Left: Han’s FTIR setup [58] does not afford high-contrast fingerprint scan-
ning, even if we eliminate the compliant surface. Right: When a finger touches the
surface (i. e., the waveguide), fingerprint ridges frustrate the internal reflection, thus
light escapes and enters the fingerprint ridges, which diffuse the light and conse-
quently illuminate adjacent valleys. Therefore, FTIR setups illuminate the entire finger
upon touch. Since the camera observes the entire finger and thus sees a finger that is
illuminated as a whole, such system cannot resolve fingerprints with high contrast.

a depth of 1 mm, which causes the light to spill over into adjacent valleys [48, 163].
Unfortunately, the camera below the waveguide captures this diffused light for ridges
and valleys alike. The finger thus appears illuminated as a whole with very little
contrast between ridges and valleys.

5.4 working principle and optical path

As explained above, the key innovation behind Fiberio is that the fiber optic plate
allows the screen to serve as a diffuse surface for projection and simultaneously act as a
reflective surface for fingerprint scanning. We now describe the details of the optical
path that enables this.

5.4.1 Diffuse Transmission

The diffusion of projected images inside Fiberio’s fiber optic plate is the result of two
independent effects: (1) ring diffusion and (2) microstructural effects inside fibers.

Ring Diffusion

As shown in Figure 5.4, light rays shone onto a fiber optic bundle with relatively
large-diameter fibers (1 mm) form a cone on exit. This cone manifests itself as a ring
on a projection surface, here a table surface 5 cm below the bottom surface of the fiber
optic bundle.
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Figure 5.4: Pointing a laser at a fiber optic plate causes it to diffuse incident light into
a ring. The angle of incident light thereby determines the radius of the ring, here
(left) small and (right) large. The shown fiber optic bundle contains large-diameter
fibers (1 mm) and rests 5 cm above a table surface

Figure 5.5 explains this effect. (a) Looking at the fiber from the side, we see that the
exit angle along this axis is always identical to the angle on entry. (b) Looking into
a glass fiber from one end, a light ray hits the surface of the fiber. (c) The ray enters
the fiber and on its way down, the ray describes the shape of a star polygon. (d) We
inject a second ray, parallel to the first, but at a small offset. We see how the slight
offset causes the star polygon of the second ray to be made from more obtuse angles,
allowing this ray to travel a greater angular distance and thus exiting in a different
direction. (e) With multiple rays varying by how much they “rotate” inside the fiber,
but exiting at the same angle with respect to the fiber, rays form a ring.

ɴ
ɴ
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Figure 5.5: Each fiber diffuses parallel incident light into rings. (a) All rays have a
constant entry and exit angle with respect to the fiber, which determines the radius of
the emerging ring. (b) A fiber viewed top-down. (c) A ray enters the fiber and bounces
down the fiber in a rotary pattern. (d) A parallel, but slightly offset ray exits into a
different azimuth direction. (e) This variation in azimuth causes incident light to form
a ring upon exiting the fiber.

Microstructural Effects Inside Glass Fibers

In contrast to the large-diameter fibers, a fiber optic plate made from very small-
diameter fibers produces not only ring diffusion, but also much more diffuse light
scattering as shown in Figure 5.6. This is essential for making Fiberio’s projected image
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visible from all sides. At 6 µm, each fiber in our fiber optic plate is only an order of
magnitude larger than the wavelength of the light it transports, causing transmitted
rays to scatter due to diffraction effects. In addition, the light reflected inside the fibers
is subject to the microstructure of each fiber’s core and cladding [81], which produces
variations in reflection angles inside each fiber. Due to the thinness of such fibers, light
is frequently reflected inside the fibers, which causes microstructural effects to manifest
themselves in a stronger scattering of light upon exit.

Figure 5.6: Left: A fiber plate with a multitude of very small-diameter fibers (6 µm)
blurs ring diffusion, which scatters the incoming light into all directions. This is the
basis for good light diffusion, which we need to produce an image on a touchscreen.
Right: The fiber plate rests 5 cm above the table. The image on the plate is visible even
from extreme angles.

As shown in Figure 5.6, the light diffusion produced by the fiber optic plate exhibits a
mild hotspot around the ring. We account for this in Fiberio’s setup by mounting the
projector at an angle with respect to the fiber optic plate to further increase the amount
of light diffusion.

In summary, the fiber optic plate diffuses light while conducting it along the fiber; this is
different from the traditional way of diffusing light while passing through a diffuse
surface. Diffusing light while conducting it allows Fiberio to maintain a specular surface,
which is key to generating the contrast required for fingerprint capturing.

5.4.2 Sensing Fingerprints Using Frustrated Reflections

The specular reflection of light at the top surface of the fiber optic plate is what allows
Fiberio to capture fingerprints. These reflections occur when the light exits fibers.

As illustrated by Figure 5.7a, Fiberio shines infrared light onto the fiber optic plate
from below. Some light is reflected at the bottom surface, but most light enters and
travels up the fibers (Figure 5.7b). A large portion of the light exits the fibers, but the
remaining portion is reflected at the top surface; the reflected light then travels back
down inside the fibers and exits at the bottom, where Fiberio’s camera observes it. Due
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to the reflection at the top surface of the plate, locations of fingerprint valleys and areas
around the finger appear “brighter” in the resulting image.

camerailluminant
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Figure 5.7: Left: In Fiberio’s configuration, we positioned the illuminant to shine light
onto the fiber optic plate from below. (a) A portion of the incoming light is reflected
at the top of the fiber, traveling back down the fiber, where the camera observes it.
(b) A fingerprint ridge touching the fiber, in contrast, frustrates the reflection at the top
end of the fiber, so that only little light travels back down the fiber, causing this spot to
appear dark to the camera.

If, however, a fingerprint ridge makes contact with the top end of the fiber (Figure 5.7b),
the reflection at the top surface is frustrated and almost all light exits the glass fibers.
Only a negligible fraction of light travels back down the fiber, so that this point appears
“dark” to the camera.

The contrast between the light reflected at the top surface and the frustrated reflec-
tion allows Fiberio to sense fingerprints. Compared to prism-based scanning, this
mechanism offers less contrast, because it returns only a small percentage of light.
Since we use a camera with very low noise, however, we obtain a good signal-to-noise
ratio. Fiberio thus extracts high-quality fingerprints from the captured images with
fingerprint edges that appear very sharp.

In the optimal case, all light reflections are frustrated at the top surface when a
fingerprint ridge is in contact. However, this requires that the skin of the finger be in
direct contact with the fibers. In the case of a very dry finger (or dust on the skin), the
frustrations may fail to occur at some locations, causing only a partial fingerprint to
appear.

To address this, we created a thin compliant surface by pouring a layer of silicone onto
the fiber plate. After having cured, the silicone increased the quality of the fingerprint.
At the same time, it reduced the polished impression upon touch, which impeded
dragging to a small extent.

In practice, we found no compliant layer to be necessary even for dry fingers, because
over time the user’s fingers leave small amounts of remnant grease on the surface. This
facilitates the process of light coupling into dry skin with-out affecting the quality of
projection or fingerprint sensing.
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5.4.3 Placing the Illuminant and Camera for Optimal Contrast

We explained in the previous sections how the fiber optic plate enables scanning
fingerprints at particular locations; to enable fingerprint scanning across the entire
large surface of Fiberio, the location of camera and illuminant become important. The
illuminant needs to shine light at the entire screen from below while the camera has to
be placed so as to capture the reflected light coming back down the fibers.

Figure 5.8 illustrates the challenge. The light that comes back down the fiber is subject
to same ring diffusion that we described earlier in the context of projection. To enable
the camera to capture reflections across the entire surface, we need to place the camera
so that it is in the optical path of the returning light. We explored three solutions.

camera illuminant

ĮďĞƌ�ƉůĂƚĞ a b c

Figure 5.8: The light that comes back down the fiber is subject to same ring diffusion
that we described earlier in terms of projection. While the camera will see reflections
off the fiber plate’s surface at location (a), reflections from locations (b) or (c) will be
invisible, because the camera does not sit on the same ring as the illuminant with
reference to the respective finger position.

5.4.4 Solution 1: Shared Location for Camera and Small Illuminant

Our first solution was to place the illuminant in the same location as the camera—
or around the camera to approximate a shared location of camera and light source
(Figure 5.9 left). This arrangement causes light to ring-diffuse back into the camera for
all locations on the screen as shown in Figure 5.9 (right). In the shown design, we offset
both camera and illuminant from the screen and mounted them at an angle in order to
prevent the camera from seeing the direct reflections of the illuminant (i. e., hotspots).

While this design works well on a small prototype, it does not scale to large screens. In
this case, the intensity of the reflected light falls off with increasing distance to touch
contacts as shown in Figure 5.9b. Eventually, the sensor in the camera will not be
sensitive to resolve the contrast between fingerprint ridges and valleys for far-away
touches, causing the resulting fingerprints to appear noisy. Since we scaled Fiberio to
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Figure 5.9: Left: This earlier prototype placed the illuminant around the camera to
approximate a shared location of camera and light source. Camera and illuminant
were tilted with respect to the screen to prevent the camera from seeing the reflection
of the illuminant in the fiber optic plate (hotspot). (a) Placing camera and illuminant in
the same location causes the returning, ring-diffused light to always hit the camera.
(b) The farther away the finger, however, the less intense such reflections appear as
they spread along increasingly large rings.

its current 19
′′ size, we switched to designs that illuminate the screen using a large

homogenous illuminant.

5.4.5 Solution 2: Using a Large Homogenous Illuminant

Our current Fiberio prototype uses evenly distributed illumination across the entire
surface. The illuminant uniformly shoots light at the fiber optic plate from below,
creating one evenly illuminated area. Since light intensities are roughly identical across
the entire surface, no single hotspot occurs and thus no area of oversaturation or
undersaturation in the camera image.

As shown in Figure 5.10, we prototyped two approaches to create a light source that
evenly illuminates the fiber plate. In an earlier prototype, we placed a uniform area
illuminant below the fiber optic plate (here Acrylite LED [38]) as shown in Figure 5.10a.
The main limitation of this solution was that it produced low contrast, as the reflected
light from the fingerprint not only competes with light reflected directly off the bottom
of the fiber optic plate, but the illumination layer also shines light directly into the
camera. We addressed this with yet another iteration on our design.
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Figure 5.10: Fiberio evenly illuminates the entire surface, creating one even reflection to
recognize fingerprints across the whole surface. Left: In an earlier prototype, we used
a sheet of Acrylite LED below the fiber optic plate. Right: Our current prototype uses a
half-mirror that reflects illuminations from the side.

5.4.6 Current Solution: Even Illumination Via a Half-Mirror

Figure 5.10b illustrates the conceptual setup that we use in our current prototype
as shown in Figure 5.11. It continues to use Acrylite LED to illuminate a large area.
However, we now place the sheet at the side of the table and use a half-silvered mirror
to reflect illumination to the fiber optic plate. This prevents the camera from seeing
the illuminant layer directly and thus avoids the loss of contrast that characterized our
earlier design.

The resulting design works well and since this setup illuminates the screen using a
large illuminant, the solution scales well to large screens, even beyond the 19

′′ of our
current Fiberio prototype.

5.5 details on hardware setup

As shown in Figure 5.1, Fiberio offers a 40 cm×25 cm screen surface (16
′′×10

′′, 19
′′

diagonal). This surface we implement by tiling two 25 cm×20 cm fiber optic plates
(Incom B7D59-6), which are polished and feel like a piece of glass.

The BenQ short-throw projector pointed at the screen offers a resolution of 1024×768

pixels. A hot mirror in front of the projector prevents interference with the cameras.
Due to its high resolution, the fiber optic plate has no impact on the resolution of the
projected image; each fiber measures 6 microns, whereas a projected pixel measures
∼390 microns and thus covers a multitude of fibers. Projected images are visible even
from extreme angles (Figure 5.6 right), because of the numerical aperture of the fibers
we use (1.0). The refractive index of their core (1.8) and that of the cladding (1.49)
allows for maximum acceptance and exit angles of 90°.
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Figure 5.11: Our current prototype illuminates the fiber optic plate evenly, creating
optimal reflections for the camera to resolve fingerprints at all locations on the touch
surface. We use an area illuminant (Acrylite LED with light injected from the sides)
mounted to the side of the table and a half-silvered mirror to reflect illuminations.
All sides of the table are covered with black cloth to prevent reflections from the
environment in the camera image (here we left out the covers to show the inner
components of the system).

A frame made from a 40 mm aluminum profile system holds Fiberio’s components
in place. Fiberio’s height of 38

′′ is designed to minimize fatigue on the standing
workstation.

To achieve fingerprint scanning across Fiberio’s entire surface at a resolution needed
for reliable scanning (500 dpi [93]), our setup would require a camera resolution of
8000×5000 pixels. In our prototype, we used a high-resolution camera (Teledyne
Dalsa Falcon2, 4000×3000 pixels, 60 fps), which observes only a sub region of Fiberio’s
surface (20 cm×15 cm). We supplemented this approach with a web camera to enable
touch interaction across the entire surface (Sony PS3, 640×480 pixels, 75 fps), which
we set up in a diffused illumination arrangement. Both cameras and the projector are
calibrated to a shared world-coordinate system.

While our prototype setup using a half-mirror achieves the best illumination across
Fiberio’s whole surface, the switch to scanning prints on only a quarter of the surface
allowed us to reduce the footprint of the table. We therefore substituted the half-mirror
with one 4 W infrared illuminant.
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5.6 image processing

Currently, Fiberio locates and tracks all touches based on the low-resolution camera,
implementing a typical diffused illumination processing pipeline [96]. When touches
enter the region observed by the high-resolution camera, Fiberio locates fingerprints,
extracts them along with their features, and matches features against the records stored
in its fingerprint database.

Future versions of Fiberio will cover the entire screen either using a 2×2 array of
high-resolution cameras or using a single camera and a high-speed pan and tilt mirror.

5.6.1 Fingerprint Processing Pipeline

To extract the locations and directions of fingerprint features, i. e., ridge endings and
bifurcations (so-called minutiae), which allow identifying users, we implemented the
algorithms commonly used to process fingerprints [93]. Figure 5.12 illustrates the
pipeline we implemented.

a b c d e f g h

Figure 5.12: Fingerprint processing pipeline (images are cropped). (a) Raw image,
(b) areas of high standard deviation, (c) flow field, (d) Gabor filter, (e) binarized
fingerprint, (f) mask, (g) skeleton and (h) extracted locations and orientations of all
fingerprint features.

The 768×768 pixel raw image shown in Figure 5.12a contains the reflections from the
user’s finger. Fingerprint ridges appear as dark lines inside a brighter area. Fiberio
starts by removing possible luminance gradients by subtracting a low-pass copy from
the image. (b) Fiberio locates fingerprints by calculating the standard deviation of
brightness values for 16×16-pixel subregions in the image. High brightness deviation
indicates the presence of adjacent ridges and valleys. Fiberio uses this to produce a
mask—all further processing takes place inside this area.

To improve the contrast of the fingerprint, (c) Fiberio computes the direction of the main
gradient across all 8×8-pixel subregions, resulting in the flow field of the fingerprint.
We input the flow field into (d) a Gabor filter, which improves the edges in the
fingerprint according to their orientation, thereby smoothing noisy and interrupted



88 fiberio: a touchscreen that senses fingerprints

ridges. (e) Binarizing the result now brings out a sharp contrast between ridges and
valleys in the fingerprint.

To extract the locations of all minutiae from the fingerprint, Fiberio obtains (f) a refined
mask of the fingerprint and (g) derives the skeleton of the binarized fingerprint. The
skeleton reveals the locations and orientations of minutiae; locations in the skeleton
that have three neighboring pixels are bifurcations, whereas locations with only one
neighbor are ridge endings as shown in Figure 5.12h.

To match two fingerprints based on their minutiae, Fiberio finds the best spatial
alignment of both point sets using Bozorth matching [93]. It then computes a matching
score based on the number of minutiae that match in terms of location and angle. When
Fiberio compares an observed fingerprint to fingerprints in its database, it requires
fingerprints to match in at least 10 minutiae locations.

5.6.2 GPU Acceleration and Resulting Performance

Fiberio runs touch recognition, fingerprint extraction, matching, and graphics using
parallel threads, allowing it to stays responsive to user input at all times. Since
processing fingerprints is computationally expensive, we implemented our pipeline in
CUDA 4.2 to run on the GPU (NVIDIA GTX 680), which allows our system to run at
interactive rates.

Extracting all minutiae from the raw fingerprint image currently takes Fiberio 21 ms
per frame. The speed of matching fingerprints currently increases linearly with the
number of records in the database (0.55 ms per record).

5.7 reconstructing finger poses in 3d from fingerprints

Being able to extract the fingerprints from the 2d touch image, Fiberio analyzes
fingerprints to reconstruct users’ 3d finger poses in addition to identifying users. One
of the outcomes of this reconstruction is that Fiberio supports high-precision touch
input as described in Chapter 3, but this time on a fully interactive touchscreen. While
Ridgepad accomplished 3d reconstruction using image matching, Fiberio implements
a more elaborate pipeline to determine the 3d finger pose.

Figure 5.13 shows Fiberio while reconstructing the user’s 3d finger pose from the
fingerprint. On the left, Fiberio shows the user’s fingerprint and parts of the hovering
finger as observed by the camera. From this image, Fiberio reconstructs the 3d

configuration of the user’s finger and renders a 3d hand model on the right that
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matches the user’s hand pose. Note that the hand model is mirrored at the touch surface
and mimics the user’s finger 3d rotations as they change in yaw, pitch, and roll.

Figure 5.13: Fiberio reconstructs the user’s 3d finger orientation from the observed 2d

touch image by extracting and analyzing the fingerprint. Fiberio renders its reconstruc-
tion in the form of a 3d model that matches the user’s pose.

5.7.1 Algorithm: From the 2d Fingerprint to 3d Rotations: Yaw, Pitch, and Roll

To reconstruct the 3d rotation angles of the user’s finger, Fiberio reuses the features
that we extract when identifying users as explained in Section 5.6. This identification
step not only identifies the user, but in addition reveals with which finger the user
has touched the surface, as fingerprints are finger-specific [93]. We base all following
explanations on having identified the user and the finger used for touch input as a first
step during the identification phase.

While Fiberio obtains the yaw rotation of the user’s finger directly from the image, we
predict roll and pitch rotations using pre-recorded training data. Key to extracting all
three angles is deriving a contact mask that precisely encompasses the fingerprint in
order to distinguish it from the hovering parts of the user’s finger in the input image.

Contact Mask: Distinguishing the Contact Area from Hovering Parts

In order to predict the finger rotation based on the fingerprint, we first need to localize
the fingerprint and extract it from the remaining part of the finger in the image. The
difficulty lies in precisely detecting the outer edges of the fingerprint ridges, because
an inexact mask will later cause artifacts outside the contact area to influence the
prediction of finger pitch and roll. As shown in Figure 5.14a, the structure of the fiber
optic plate becomes apparent outside the contact area and causes spurious features if
not masked correctly.
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To obtain a mask of the contact area between the finger and the touch surface as shown
in Figure 5.14, we apply a threshold to extract the rough region of the finger, which
results in the touch contact and part of the hovering finger (b).
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Figure 5.14: Extracting the contact mask from the (a) raw image: (b) Applying a thresh-
old produces the touch contact and parts of the hovering finger. (c) We calculate the
magnitude of flow intensities using a sliding window-based approach and (d) threshold
the result. Extracting the largest resulting contiguous area, multiplying it with the
threshold (b) to remove spurious blobs, blurring and thresholding the result produces
(e) the final mask.

To refine the mask, we analyze the covariance of brightness intensities in the raw image,
which is high at locations in the image that exhibit closely collocated fingerprint ridges
and valleys, i. e., areas that have a certain “direction” (c). To accomplish this, we reuse
the magnitude of the flow intensities that we calculated to obtain the directions of
the main gradient for the region around each pixel in the image in Section 5.6 (see
Figure 5.12c). Performing this on tiles measuring 16×16 pixels thereby produces a
mask with high enough precision along the outline of the contact area. As shown
in Figure 5.14d, thresholding the magnitudes, which we normalize across the whole
fingerprint, at 90% results in an approximation of the contact mask.

Finally, we extract the largest connected component from the thresholded magnitudes,
multiply it with the hover threshold (b), blur the resulting blob and threshold it again
to obtain the final mask with a smooth outline as shown in Figure 5.14e.

From the resulting mask, we extract the typical properties of a touch contact, such as
position, width, and height.

Yaw

Having located the touch contact in the input image, we can now extract the yaw rota-
tion of the user’s finger by analyzing the hovering parts of the finger. In Figure 5.14, we
previously extracted the (b) hovering part of the user’s finger as well as (e) the contact
mask. As common in processing touch input in diffused illumination systems [96], we
simply relate the center locations of both blobs to obtain the yaw rotation of the user’s
finger. Figure 5.15a shows the contact mask overlaid in gray onto the hovering finger
and the resulting yaw estimate.
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In addition to the finger’s yaw rotation, we exploit the diffused illumination properties
of the fiber optic plate to estimate the user’s position around the table. We accomplish
this by adaptively thresholding the entire raw touch image we obtain from the web
camera at a very low brightness intensity. This reveals the user’s hand and parts of
their arm in addition to the finger. Starting at the touch position, we trace a path
through the user’s hand and arm to the edge of the tabletop. If an arm does not extend
all the way to a table edge, our algorithm extrapolates linearly from the farthest point
inside the visible part of the arm.

Pitch and Roll

To extract the pitch and roll rotation of the finger from the masked part of the fingerprint
(Figure 5.15b), we analyze the curvature of the visible part of the user’s fingerprint
and derive a histogram from all local curvatures. Similar to how we trained Ridgepad,
we again use a k nearest neighbor approach to determine the rotation angles, this time
matching the histograms of local curvatures.

a b c d
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Figure 5.15: (a) The yaw rotation of the finger results from relating the center of gravity
of the touch mask (gray, small cross) to the center of the hovering finger (white, large
cross). (b) We determine the width and height of the mask in the direction of the yaw
rotation. We separately extract the fingerprint from the raw image and compute the
(c) flow field using a sliding window-based approach for regions within the mask.
(d) We then derive a histogram of flow directions, which we normalize and correct for
the yaw rotation we obtained in (a).

We compute the histogram of fingerprint curvatures using the flow field we obtained
to improve the contrast of the fingerprint during identification in Section 5.6. As shown
in Figure 5.15c, we again tile the fingerprint in regions of 16×16 pixels and obtain the
direction of the main gradient within that cell, each time using the gradients in the
surrounding eight cells to stabilize our calculations. We then correct this direction for
the previously computed yaw orientation and derive a histogram with 16 buckets, each
bucket representing a direction (Figure 5.15d). Compensating for yaw rotations allows
us to obtain yaw-independent histograms, which is crucial to matching pitch and roll
later.
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In order to ensure that this approach produces valid curvature histograms, only the
flow of tiles that actually contain a part of the user’s fingerprint must be added to the
histogram. We use the previously computed mask to decide whether or not the flow
within a tile should be added to the histogram.

In addition, we discard the flow direction of a tile if the magnitude of flow within
the tile is below a threshold, i. e., the flow within that tile is not pronounced enough.
This prevents adding spurious flow directions to the histogram, such as those that may
occur around the outline of the contact area. Spurious flow directions may also occur
inside the fingerprint, such as in regions that are too noisy, causing ridges and valleys
not to be discernible.

After deriving the histogram of local curvatures, we normalize all values in the his-
togram. This allows us to treat fingerprints that result from touches independent of the
size of the contact area. Normalizing histograms also facilitates comparisons during
the matching process.

Separately from the previous computations, we derive the width and height of the
contact area in the direction of the finger yaw, which we obtained before. We thereby
consider the height of the contact area in the direction of the user’s finger and the
width across its direction as shown in Figure 5.15b. This again allows us to obtain
yaw-independent values for the dimensions of a touch contact.

Altogether, Fiberio extracts 18 features from each fingerprint to predict pitch and roll
rotation of the user’s finger. They comprise 16 features derived from the histogram of
local curvatures and 2 features obtained from the dimensions of the contact area.

5.7.2 Training the Predictor

We collect training data to derive a model for the prediction of pitch and roll angles
using a procedure that is similar to Ridgepad’s training (Section 3.4.1). To train our
system using their fingerprints, users assume various pitch and roll combinations with
their finger and touch Fiberio’s surface. Fiberio captures the visible part of the user’s
fingerprint, extracts the 18 features we described in the previous section, and stores
them in a database along with the current roll and pitch rotation angles.

Figure 5.16 shows the pitch and roll rotations users assume to touch the surface and
train the system. In our tests, users touched the surface 3 times for each combination
of pitch and roll rotation, i. e., 5 roll angles × 5 pitch angles × 3 repetitions = 75 times.
While we experimented with an optical tracking system to record ground-truth data
for the assumed 3d finger poses (similar to our setup in Section 3.5), we noticed no
difference in system performance if the assumed finger poses were instead controlled
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by an experimenter. Including an experimenter in the training procedure also rapidly
sped up training procedure and involved less overhead managing the optical tracker.

90° 45° 15° 0° -15°

90° 65° 45° 25° 15°

roll

pitch

Figure 5.16: To train our classifier for finger roll and pitch prediction, participants
touched Fiberio’s surface using each of these combinations of finger rotations with
3 repetitions.

5.7.3 Runtime Prediction: Matching Histograms

During runtime, Fiberio first executes the fingerprint processing pipeline described in
Section 5.6 to identify users and subsequently predicts the user’s 3d finger pose. To
accomplish this, Fiberio performs the steps described in the previous section, including
building the contact mask and deriving the yaw rotation directly from the image.

In a second step, Fiberio extract the 18 features from the fingerprint and compares them
with all records in its database. We thereby use a simple metric to compare histograms.
We interpret a normalized histogram record as a 16-dimensional vector and obtain the
similarity of two records by calculating the angle between the two vectors. We derive
the similarity of the remaining 2 components of our feature vector by their absolute
differences.

Finally, we predict roll and pitch rotation of the user’s finger based on the k most
closely matching database records. We select k = 3, which corresponds to the number
of repetitions per angle in the training phase; for a larger number of training samples,
k should be chosen higher. We average the roll and pitch angles associated with the
top k matches using spherical linear interpolation.

From the predicted combination of yaw, pitch and roll rotation of the user’s finger, we
render a 3d model of a hand underneath the user’s hand as shown in Figure 5.13. The
3d model is mirrored at the surface of Fiberio and mimics the user’s in-place finger
rotations.
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5.7.4 Limitations

Our current approach is limited to reconstructing the 3d finger pose from a 2d fin-
gerprint for a single finger. The 3d model shown in Figure 5.13 assumes that users
touch the surface using their right index finger and that all other fingers are tucked in.
Our approach does not allow recognizing the pose of the user’s fingers that are not in
contact with the surface or the shape of the user’s hand.

Future versions of our system will include the reconstruction of several simultaneous
and closely collocated touch events. From this, we intend to estimate and render the
user’s 3d hand shape by reconstructing the pose of each finger and using inverse
kinematics and constraint solving to obtain the shape of the whole hand. While this
reconstruction will still be underspecified unless all of the user’s fingers are in contact
with the surface, our prediction will approximate reality as more fingers touch the
surface.

5.8 biometric user identification on touchscreens

Since Fiberio incorporates fingerprint scanning into a touchscreen, it solves a long-
standing challenge in human-computer interaction: biometric user identification.
Fiberio thereby performs user identification upon each touch, which allows us to
integrate secure authentication into touch interaction with graphical user interfaces.

5.8.1 Example Scenario: Collaborative Approval of Invoices

Figure 5.17 shows one of the examples we have implemented to demonstrate Fiberio’s
capabilities in terms of secure authentication. A bank clerk and his manager approve
invoices by pressing the ‘pay’ button on each invoice. When the invoice exceeds the
clerk’s approval limit as shown in Figure 5.17a, Fiberio refuses the transaction until
(b) the clerk asks the manager to (c) approve the invoice. He does so by pushing the same
button the clerk had pressed. This time, however, the transaction is performed under
the manager’s credentials, verified against his higher approval limit, and approved.

Fiberio enables this scenario by authenticating users during each touch interaction
and, in this scenario, by retrieving their approval limit from a database. Fiberio
does so by authenticating users based on their fingerprints—integrated seamlessly
into regular interaction. This allows Fiberio to avoid the need for login procedures,
identification tokens, or reduce reliability and security—something related systems
currently compromise on.
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a b c

Figure 5.17: Example scenario. A bank manager (left) and clerk (right) approve invoices.
(a) When the clerk encounters a bill above his approval limit, Fiberio refuses the
payment transaction. (c) The manager completes the transaction by pushing the same
button, but this time, Fiberio executes the operation using the manager’s credentials,
verifies it against his approval limit, and completes the operation.

5.9 evaluation

The purpose of our evaluation was to verify that Fiberio’s sensor setup captures
fingerprints with sufficient quality to allow it to recognize users reliably. To evaluate
identification performance, we compared 30 fingers (three fingers per each of the 10

participants, ages 20–32, 2 female).

5.9.1 Apparatus

We conducted this evaluation using an earlier version of our prototype, which featured
a lower-resolution camera (8.8 MP Flea3). Considering that the image sensor of that
camera was inferior to that of our current camera and we used our current algorithms
for processing input, the results from this evaluation apply to our current prototype.
The study apparatus was set up to capture fingerprint images at a resolution of 500 dpi
and 8 ms shutter time. We performed all processing on a 2.2 GHz Intel Core 2 Duo
processor with 4 GB of RAM and an NVIDIA GTX 680 graphics card using the described
algorithm. The projector was switched off.

5.9.2 Task and Procedure

As shown in Figure 5.18, participants touched the screen region captured by the high-
resolution camera during each trial, each time using one of their right hand’s index,
middle or ring finger. Participants thereby used their finger pad for touch input and
repeated input five times, performing fifteen trials overall. Due to the limited frame
rate of the camera we used during the evaluation, participants were required to hold a
touch for around 400 ms. This allowed the camera to capture frames reliably. This is
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no longer required for our current system due to the substantially larger frame rate of
our current camera. For each trial in the evaluation, Fiberio processed only a single
frame, namely the one in which the contact area of the touch was maximal. Participants
received no feedback during the evaluation.

Figure 5.18: A study participant during
the evaluation. The prototype was con-
figured to provide no feedback.

5.9.3 Processing

The evaluation resulted in 150 captured fingerprints, from which we extracted the
minutia sets and created a database. We then performed minutia-based matching on
each of the captured prints against all 149 other records.

5.9.4 Results and Discussion

The cross-validated analysis resulted in 148 of 150 fingerprints being correctly matched,
0 wrong matches, and 2 no matches (i. e., samples that produced less than the minimum
number of 10 minutiae needed for identification). The average processing time for
matching a minutia set against all others was 267 ms.

These findings show that Fiberio identifies users reliably by their fingerprints and at
interactive rates. Since the speed of user identification scales linearly with the number
of samples in the database, this process runs asynchronously to still support responsive
interaction.

Of course, participants used their finger pads when providing input, which allowed for
optimal feature extraction. While flat fingers exhibit more than 100 minutiae, fingertips
contain fewer features (0.18/mm2 [93]). However, 12–15 visible features suffice to
identify users when touching, which fingertips may provide depending on their tilt.
Fiberio’s height of 38

′′ facilitates touching with flat finger angles, which is optimal to
extract a multitude of features. While users might be less careful during regular use, a
live system could produce feedback on their touch events and ask for repeated input
upon unsuccessful identification.
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Note that a lack of visible features in a touch does not lead Fiberio to misidentify users.
If a fingerprint exhibits too few features, Fiberio does not attempt to identify users.

5.10 benefits and limitations

In addition to resolving touch events at a fingerprint level, Fiberio implements a
standard diffused illumination table. This results in additional desirable properties,
such as the ability to detect hover and fiducial markers as shown in Figure 5.19. On
the flip side, similar to other diffused illumination setups, Fiberio’s rear projection
requires space and it is susceptible to interference by strong infrared light sources in
the environment.

Figure 5.19: Fiberio recognizes touch, but also hovering objects (here fingers) as well as
fiducial markers. This reactTivision fiducial marker [79] measures 3 mm×3 mm.

A positive side effect of the fiber optic plate is that Fiberio is inherently free of parallax.
Users see the projected output on top of Fiberio’s screen; when users touch that output,
Fiberio’s cameras see this touch contact exactly where it occurs, because touch contacts
appear at the bottom surface of the fiber optic plate. Combined, this allows for
particularly precise input.

Finally, Fiberio is subject to the same limitations as other biometric authentication
mechanisms, such as the risk of spoofing using fake fingerprints [93], as well as
concerns in terms of surveillance and respecting users’ privacy. To evaluate Fiberio’s
capabilities in identifying users amongst a large population, a deeper evaluation of the
system with a large number of participants of a large span of ages and a wider range
of demographics.
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5.11 conclusions

In this chapter, we presented Fiberio, a touchscreen that senses fingerprints. The key to
making this possible is the fiber optic plate, which offers both specular reflection and
diffuse transmission. This allows Fiberio to simultaneously display images and scan
users’ fingerprints on the same surface.

Fiberio’s capabilities allow us to implement all the concepts that we introduced in this
and previous chapters on an interactive touchscreen. Fiberio reconstructs 3d information
about the space above the screen from the 2d image it observes. It accomplishes this by
analyzing each user’s fingerprint, identifying the user, and reconstructing the user’s
finger pose in 3d. These capabilities enable Fiberio to redeem our findings in Chapter 3

and implement high-accuracy touch sensing.

As a side effect, Fiberio solves a long-standing problem in human-computer interaction
in that it identifies each user during a touch event based on their fingerprint. For
fifteen years, researchers have hypothesized the existence of such a touchscreen, be
it for activity logging [138] or access control [34] in collaborative scenarios. Fiberio
enables such multi-user applications and implements secure and reliable access control
for each touch event. Fiberio thereby extends the notion of touch-input events by the
user’s identity: In addition to (x, y) coordinate pairs that user interface controls receive,
each such control now receives the user’s identity.
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G E N E R A L I Z I N G 3D FROM 2D TOUCH TO LARGE FLOORS

This chapter is based on results of the group project “Multitoe,” published in [10, 22].
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Figure 6.1: 3d reconstruction from 2d touch contacts extended to large multitouch
floors. Left: Our prototype recognizes input from three users and three pieces of
furniture solely in the form of 2d high-resolution per-pixel pressure sensing in the floor.
Right: From the sensed 2d pressure image, we reconstruct an understanding of the
physical 3d world: the position and orientation of multiple users, the identity of users
in the form of personalized avatars and users’ 3d body poses. The system displays a
mirrored representation of this understanding on the floor (left).

In this chapter, we describe how the same principles of reconstructing 3d information
about the objects that are in contact with the 2d touch sensor extend to larger surfaces.
We demonstrate this at the example of a multitouch floor that observes touch in the
form of high-resolution per-pixel pressure.

The main contribution of this chapter is a new approach to 3d user and object tracking
in a smart room based on a single touch sensor embedded into the floor. While the
sensor is limited to sensing contact with the surface, we demonstrate how to reconstruct
a range of objects and events that take place on as well as in the 3d space above the
surface, such as user’s poses and collisions with virtual objects. We thereby build on
the concepts that we introduced in Chapter 3 and Chapter 5 for reconstructing 3d

from 2d touch contacts on surfaces that users interact with using their hands. We now
generalize them to floors, which observe different kinds of input: soles as users walk

99
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across the floor, the texture of users’ clothing as they kneel or sit down as well as the
imprints left by passive objects in a room, such as furniture. We demonstrate how
all such input still leaves characteristic imprints, which we analyze to identify users,
reconstruct the 3d posture of users’ bodies, and enable high-precision touch input
using feet—similar to how we processed users’ fingerprints to reconstruct additional
information in previous chapters.

To explore this approach, we present a large back-projected floor installation that senses
high-resolution pressure input. Incorporated into a room, we use our prototype to
demonstrate our vision true to scale as shown in Figure 6.1. We first demonstrate
how to advance multitouch interaction from traditional touch devices, such as mobile
devices and tabletops, to a large floor that is operated based on foot input. This
comprises concepts, such as precise direct manipulation and techniques to overcome
the inherent uncertainty of input of floors, including as inadvertent activation and the
lack of input modes. We then show how to reconstruct the users and objects in the
room in 3d from just the 2d touch contacts they leave on the floor.

6.1 direct manipulation on multitouch floors

The nature of direct touch input known from tablets or tabletops limits the size of such
devices. Contents can only be touched if located within arm’s reach. While this is no
problem on mobile devices or even small tabletop systems, tables larger than arm’s
length pose a challenge for users, as they need to artificially extend their reach. In
order to preserve the direct touch concept, current tabletop makers have opted to create
coffee table-sized devices, such as the Microsoft 30

′′ Surface table [99] or the SMART
27
′′ tabletop system [143].

However, the size constraints of tabletops have limited applications that run on hor-
izontal surfaces to those that fit available sizes. This excludes applications in which
users interact with thousands or ten thousands of on-screen objects, such as complex
visual sensemaking applications.

In this chapter, we explore interaction with direct touch surfaces that are orders of
magnitude larger than tables. For this purpose, we integrate high-resolution multitouch
technology into back-projected floors. Unlike tabletop users that stand along the table’s
perimeter, floor users walk across these surfaces, allowing them to reach any part of the
floor—independent of the size of the installation.

In order to enable direct manipulation on floors, we base our design on frustrated total
internal reflection with high-resolution camera as shown in Figure 6.2. Unlike earlier
floor installations that achieved display size at the expense of input resolution (e. g.,
[29] and [85]), we demonstrate how the use of FTIR allows us to maintain the direct
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Figure 6.2: Integrating high-resolution FTIR into a back-projected floor allows the floor
to see the pressure distribution of the user’s soles (inset top left, as seen from below).
In the shown situation, the floor ignores the foot on the right based on its posture,
yet allows the foot on the left to interact. By identifying the user based on her sole
patterns, the floor has attached a user-specific high-precision pointer to her foot, which
allows her to operate tiny controls, here a keyboard.

manipulation interaction model of tabletop systems, despite the dramatically different
size.

As suggested by its name, the interaction concept of tabletops, i. e., direct manipulation
was designed with hands in mind. The adaptation to interactive floors results in the
following series of challenges.

First, users stand on floors. We address inadvertent activation by making the floor
ignore all input unless users demonstrate a specific foot posture (i. e., tapping in our
case as shown in Figure 6.3a).

Second, distances on floors are potentially very large. We address this with location-
independent pop-up menus that users invoke by jumping (Figure 6.3b).

Third, to allow for a consistent interaction model, the floor needs to know which parts
of their feet/shoes users expect to be “active.” We conducted a simple study in which
most participants expected not just the contact area, but the entire projection of their
shoes to actively trigger interactions.

Fourth, feet are roughly 200 times larger than fingertips and less precise. When
necessary, we offer a high-precision mode that condenses a user’s foot into a single
“hotspot” (Figure 6.3c). Since users disagree about the location of this hotspot, we allow
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them to customize its location. To enable personalization, the floor recognizes users
based on their sole patterns (Figure 6.3d).

After establishing basic touch interaction on floors, we take a closer look at algorithms
and at the additional functionality enabled by FTIR floors: how to track users’ heads
based on the pressure distribution in their soles (Figure 6.3e), and how to enable
high-degree of freedom interaction (Figure 6.3f).

a b c d e f

Figure 6.3: (a) Users trigger interactions with a specific foot posture, (b) invoke menus
by jumping, (c) interact precisely using a hotspot, which is (d) enabled by sole-based
user recognition. (e) FTIR-based tracking also allows controlling applications using
body posture and (f) foot posture.

6.2 prototype platform to simulate interactive multitouch floors

Most of the functionality of our floor design is enabled by FTIR. In this section, we
explain the technology in additional detail and juxtapose it to other technologies we
have tried.

6.2.1 Tracking Using Front DI and High-Resolution FTIR

We initially experimented with traditional rear-diffuse illumination. While we found it
to work well with light soles, it produced no effect when users wore shoes with black
soles as shown in Figure 6.4a.

The key step was to add FTIR. The main benefit of FTIR in our application scenario is
that it makes pressure visible, as was explored earlier in the context of wall displays [30].
As illustrated by Figure 6.4c, bringing FTIR to floors reveals weight distributions; here
we see that the foot on the left bears most of the weight, while the foot on the right
does not, indicating basic properties of the user’s posture.

Unlike other floor designs, we use a camera whose resolution is comparable to the
resolution offered by multitouch tables, i. e., a pixel size of 1.0 mm (comparable to the
components used inside a Microsoft Surface table). As illustrated by Figure 6.4c, this
reveals the next level of structure inside the sole, such as patterns and logos of the shoe
manufacturer.
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a b c

Figure 6.4: A user wearing shoes with black soles is standing on our floor prototype.
(a) Front Diffused Illumination, (b) Frustrated Total Internal Reflection, (c) Front DI
with FTIR, at 1 mm resolution camera.

6.2.2 Materials and ½ m2 Prototype

To prototype an interactive floor, we started by assembling a large set of tables and
incorporating an FTIR-based system into one of the tables. Figure 6.5 shows the first
floor prototype we built to explore foot-based interaction. In order to keep material
expenditure reasonable during the exploration phase, FTIR input on this prototype
was limited to a small sub-region (70 cm × 50 cm). The floor’s projection resolution is
0.6 mm per pixel; the camera resolution is 1.0 mm/pixel.

LEDs

screen

acrylic

34mm glass

silicone

Figure 6.5: Left: Our first working prototype was composed of multiple tables. Only
a sub-region of one table was interactive. (In the picture, the projection screen and
compliant surface is not shown.) Right: Our prototype measures ½ m2 and uses 34 mm
safety glass, 8 mm acrylic, Tectosil 185 silicone, and a Rosco projection screen.

The setup of our Multitoe prototype was reminiscent of traditional FTIR systems,
appropriated to support standing and walking users. Figure 6.5 (right) shows the
stack-up of our floor surface. A three-layer 3.4 cm/1.34

′′ glass pane provides structural
support, an 8 mm layer of acrylic serves as the waveguide, and a Rosco projection
screen [131] creates the image. Between waveguide and screen, we use a layer of
Tectosil 185 500 µm silicone as compliant surface. As with all FTIR devices [58], a
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compliant surface helps obtain a well-defined amount of frustration for a given amount
of pressure. Tectosil 185 is a stiff silicone, which allows us to distinguish pressure at
the upper end of the scale, e. g., to distinguish a user resting the entire weight on the
ball of one foot from a user standing straight.

On the table prototype, we combine FTIR with front diffused illumination. In contrast
to regular diffused illumination [96], front DI is ignorant of shoe color and allows us to
track the shadows casts by shoes. Including front DI in our floor design produces the
rough outline of users’ shoes in the camera image, which facilitates extracting which
part of the shoe is actually in contact with the floor (Figure 6.4a).

6.3 resolving inadvertent activation

Unlike tabletop devices, floor users are in contact with the floor at basically all times.
To enable direct manipulation, we need a mechanism that distinguishes between
intentional action (the analog to touch on tabletop) and standing/walking (the analog
to hover on tabletop).

For most foot-operated devices, this distinction is handled spatially. Users step onto
the gas to accelerate; in order to not accelerate, they rest their foot elsewhere. We can
port the same concept to our floor design by inserting pathways of touch-insensitive
areas between controls. Unfortunately, this prevents us from using large controls, such
as the painting surface of a painting program. We thus need a gesture that allows users
to not interact even though they are standing on a control.

Several alternative designs seem possible: Users could jump onto a button to activate it
or stomp on it, etc. Not all of them are equally ergonomic though and it is unclear how
intuitive they are. To find out what works for users, we conducted a simple user study
to inform our design. Our study was inspired by the study conducted by Wobbrock
et al. on the gestures users perform on tabletops [171].

6.3.1 User Study: How to Not Activate a Button On the Floor

The purpose of this study was to help design a mechanism that matches users’ intuition
and allows the floor to distinguish intentional user action from regular walking and
standing. Participants’ task was to walk across four “buttons,” such that two of them
would be triggered, while the other two would remain in their current state. We
observed participants’ strategies and interviewed them.
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Interfaces and Task

As illustrated by Figure 6.6, the interface was ‘implemented’ using four paper buttons
taped to the floor. There were a small and a large button labeled ‘ok,’ and a small and
a large button labeled ‘cancel.’ Large buttons measured 40 cm×60 cm, small buttons
10 cm×10 cm.

During the study, participants walked across the four buttons. Half of the participants
were tasked to “activate” the two ‘cancel’ buttons and get across the ‘ok’ buttons without
activating them; the other half was instructed to activate the ‘ok’ buttons instead. An
experimenter observed participants’ strategies. Finally, participants explained their
rationale in a verbal interview.

Participants

We recruited 30 participants (6 female) from our institution; they were between 21 and
29 years old.

Results

Figure 6.6 (right) shows selected participants performing the task. Together, participants
demonstrated nine different strategies as shown in Figure 6.6.

Strategy

Part of
foot

Pressure
amount

tap (ball only)

stomp
jump onto
double-tap
dwell (stand)
right foot
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1

1
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2
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walk
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Figure 6.6: Left: Strategies and number of participants who employed them. (∗ does
not work with densely packed controls, ∗∗ raises ergonomic concerns). Right: Five par-
ticipants demonstrate how they activate a button: (a) tapping, (b) jumping, (c) walking
on center, (d) dwelling, and (e) stomping.

Discussion

The breadth of strategies emphasizes that there is no widely accepted model for
interaction using feet.
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Not all demonstrated strategies are applicable to all scenarios. The strategy “walk
along edge of button” fails for densely packed arrangements of tiny controls, such as
the pixels of a painting program—some pixels are always hit straight on. Four other
strategies raise ergonomic concerns (marked ∗∗ in Figure 6.6 left): Walking on heels
and tiptoeing can get tiring over time. Activating by dwelling requires users to walk
perpetually in order not to activate. Activation with the right foot requires users to
hop on their left foot when crossing large controls without activating.

The remaining four strategies (tap, stomp, jump, and double tap) seem suitable. The
strategy demonstrated by the largest number of participants was tap with 8 participants.
Based on these findings, we implemented tap into our system.

6.4 invoking a menu

We face similar requirements when designing a mechanism for invoking menus. In
theory, a spatial strategy is possible, such as a toolbar or the corner buttons used by the
Microsoft Surface table [99]. However, since interactive floors can become arbitrarily
large, so can the distances to a stationary menu. Fixed menus therefore only make
sense if replicated at a large number of locations and/or for very infrequent tasks. For
the majority of tasks, users will prefer a location-independent interface [118].

To invoke such a context menu, we can pick any of the leftover invocation strategies
from User Study 1, i. e., stomp, jump, and double tap. We found jump to offer the best
recognition rate—it also virtually never occurs unintentionally. The implementation of
jumping is straightforward. Our floor tracks users and if both of their feet go out of
range for more than 200 milliseconds, the system invokes the menu.

6.5 selecting objects by stepping

In order to manipulate objects on the floor, users need a basic pointing technique when
using their feet for input. Since shoes occupy a substantial amount of space, they can
hit objects in many different spatial relationships, such as with their edge or arch as
shown in Figure 6.7. When defining a pointing technique, we need to decide which
parts of a shoe should be used for hit testing.

Candidates include a point-like hotspot (i. e., as in Chapter 3), the entire contact area [26,
103], and the projection of the shoe (outline of the shoe projected onto the floor). In
order to understand which of these models matches the users’ conceptual model or
whether we need an entirely different model, we conducted a brief user study inspired
by the study we presented in Section 4.3.
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User Study: Conceptual Model of Stepping

The goal of this study was to understand which area of their soles users consider to be
active in targeting and should thus be considered in hit testing.

Task and Procedure

Participants stepped onto the multitouch floor with their dominant foot wearing shoes.
A honeycomb grid was displayed under the participant’s shoe (Figure 6.7). The cells
of the grid were described to the participants as defunct “buttons.” For each such
“button,” an experimenter asked the participant if it should be depressed based on
the participant’s foot position. If the answer was “yes,” the experimenter “set” the
respective buttons which caused it to change color (Figure 6.7). All participants
completed the task in 5 minutes or less.

Apparatus

We used the ½ m2 floor prototype shown in Figure 6.5.

Participants

We recruited a set of 20 participants for this study. Participants were between 20 and
29 years old and 6 were female.

a b

Figure 6.7: (a) 18 of 20 participants felt that the area under the arch should be included,
while (b) the remaining two felt buttons under the arch should be excluded.

Results

Figure 6.8 shows shoes and button states for all 20 participants. 8 of 20 participants
matched the projection model, i. e., they set every button if it was covered by the
projection of the participant’s shoe at least at a certain percentage. This included tip
and arch. Another 7 participants matched the projection model, but left occasional
omissions along the outline (Figure 6.8b).
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Figure 6.8: Resulting conceptual models. (a) 10 of 20 participants’ model is projection;
(b) projection with minor omissions (c) 3 excluded the upward curved tip. (∗) Only 2

excluded the arch.

Three participants excluded the curved up tip of the shoe (Figure 6.8c); 2 excluded the
arch (Figure 6.8∗). One of them wore 5 cm heels, the other, a male participant, wore
sneakers. He rationalized that the arch was not touching the floor, suggesting that his
conceptual model was based on contact area.

Note that when participants referred to contact area, they did so in an idealized way.
This does not necessarily correspond to the reality on an FTIR floor, where pressure
and outlines change as users change body postures over time as shown in Figure 6.9.

Figure 6.9: The FTIR contact area changes as the user changes posture over time.

Discussion

These finding suggest that the most common conceptual model of stepping is projection,
even though some users erode the area a bit. The tracking model of FTIR, i. e., contact
area, in contrast does generally not match the conceptual model of the majority of
users.

We therefore implemented stepping primarily based on the front DI component of
our system (the dark outline in Figure 6.9). To alleviate the sensitivity of front DI to
shadows that are cast by the user’s body, we combine the approach with some FTIR
support.
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6.6 high-precision pointing using a hotspot

While the projection model makes for a good default model of floor interaction, it
prevents application designers from packing controls tighter than a foot. As illustrated
by Figure 6.10, huge controls require users to walk between buttons or extend them-
selves in order to reach them. However, our purpose of switching from a table-size
form factor to the floor was to allow for interaction with a large number of objects. In
order to allow for complexity, we need to allow applications to create small objects and
to pack them densely.

a b

Figure 6.10: Operating a keyboard with
foot-size buttons requires users to (a) walk
between buttons or to (b) extend them-
selves in order to reach the keyboard.

In order to allow for interaction with dense clusters of on-screen objects, we introduce
a high-precision mode in which users’ feet are reduced to a single hotspot. In analogy
to the previous section, we started by investigating users’ conceptual model, i. e., which
part of their foot they consider to be the hotspot. Is there a single global hotspot or
how much variation is there across users?

6.6.1 User Study: Conceptual Model of the Hotspot

The purpose of this study was to survey what point on their shoe (the hotspot) users
use to interact with point targets. We also wanted to find out how much agreement
there was about the location of the hotspot: Strong agreement would suggest a single
global solution, while little agreement would suggest the need for personalization.

Task

As illustrated by Figure 6.11a, participants wearing shoes stood on a “waiting” position
marked with circles. (b) For each trial, a target marked with crosshairs appeared 30 cm
in front of the participant. Participants placed their preferred foot onto the crosshairs,
such that the foot’s hotspot was located directly over the crosshairs. Participants then
confirmed their selection by pressing a button on a wireless presenter tool. (c) Pressing
the button recorded the floor’s FTIR image of the user’s foot as well as a photo of the
user’s foot from above. Finally, participants stepped back into the waiting position.



110 generalizing 3d from 2d touch to large floors

Figure 6.11: (a) When the crosshairs ap-
peared, (b) participants stepped onto it.
(c) We recorded the FTIR image and a
photo from above during each trial. a b c

Independent Variables and Procedure

Each participant performed the task in four conditions, three repetitions each. The
first time, they were not given any further instructions (free choice condition). In
the other three conditions, participants were instructed to aim using the ball of their
foot, the big toe of their foot, and the tip of their shoe. In order to prevent the more
specific conditions from influencing the free choice condition, participants always
started with the free choice condition. The order of the remaining conditions was
then counterbalanced.

Participants

We recruited 24 participants (8 female) from our institution. All participants were
between 20 and 29 years old. Two participants were left-footed and thus performed all
trials with their left foot.

Apparatus

We again used our FTIR floor prototype, as well as a Canon EOS 1000D SLR camera to
record participants’ shoes from above.

Results

Figure 6.12 shows participants’ hotspots mapped onto outlines of their shoes. Black
dots denote contacts made during free choice trials. The three triplets of white dots
belong to shoe tip, big toe, and ball from tip downwards.

Free choice condition: As illustrated by Figure 6.12, we classified free choice point
triplets according to which of the other triplets they were closest to. Based on this,
7 participants seemed to aim using the tip of their foot, 6 participants used their big
toe and another 6 participants used it at an offset from the toe. 2 participants used
their ball and another 3 participants aimed with a point slightly above the ball.

Figure 6.13 illustrates how participants’ hotspots relate to each other by overlaying
shoe outlines, so that the respective hotspots (centroid of all three trials) align. The
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Figure 6.12: Participants acquire the target using these points on their soles (black dots:
free choice; white dots are shoe tip, big toe, ball from tip downwards). Participants
aimed using (a) tip, (b) big toe, (c) offset from toe, (d) offset from ball, and (e) ball.

spread of 8.4 cm in Figure 6.13a suggests substantial disagreement between the free

choices of participants.

8 .4cm
3.5cm2.2cm

5.0cm

a b c d

Figure 6.13: Outlines of participants’ soles centered on the centroid of contact points
for (a) free choice, (b) tip, (c) big toe, and (d) ball. The dot indicates the position of
the cross.

Discussion and Resulting Implementation

The substantial spread among free choice hotspots implies that the use of a global
hotspot for all users would incur a large targeting error. This error can be reduced by
instructing users to aim with a specific part of their shoe, in particular the tip, which
would reduce the error to 2.2 cm in the case of the sample shown in Figure 6.13b. How-
ever, such an approach would fit the conceptual model of only 7 of the 24 participants.

To eliminate the necessity to train users to use a specific hotspot, we allow users to
customize their hotspot. When users step on the floor for the first time or with a new
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pair of shoes, a dialog with crosshairs appears. Users then step onto the crosshairs
according to their hotspot, which assigns it permanently to the respective location in
the FTIR sole pattern of this pair of shoes.

6.6.2 User Study: Targeting Precision With Custom Hotspot

As discussed earlier, our purpose for including FTIR into floors is to allow for direct
manipulation of complex applications with large numbers of objects. This implies
the necessity to support interaction with small objects. In order to inform application
design, we conducted another study to determine the lower bound on the size of such
objects. Participants’ task was to enter text using on-screen foot keyboards of three
different sizes.

Interfaces

All on-screen keyboards offered 28 keys (a–z, 〈space〉 and ‘.’) in a localized QWERTY
layout (Figure 6.14a). All three interfaces were identical except for scale. We picked
a range of sizes that would capture a wide range of error rates. Overall the three
keyboards measured 52.0 × 23.2 cm2, 31.0 × 14.0 cm2, and 15.0 × 6.8 cm2. Figure 6.14b
illustrates the key sizes we used. Note that the keys on the small keyboard were
smaller than keys on a physical QWERTY keyboard (Figure 6.14c). Space bars were
3 times wider than regular keys.
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Figure 6.14: Size of the keyboards participants typed on during the study: (a) the small
keyboard, (b) the sizes of the keys on the large, the medium, and the small keyboard,
(c) key of a physical keyboard for reference scale. All illustrations are to scale.
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Participants wore their own shoes and targeted using a self-selected hotspot. Since our
goal was to study the limits of users’ abilities, we minimized tracking-related inaccuracy
by attaching an extruded dot (a �11 mm nut) to the user’s sole at the location of their
hotspot, which eliminated remaining tracking errors.

Task

For every trial, participants entered the sentence “ the lazy brown dog.” (including
the leading blank and the trailing period), which was shown above the keyboard.
Participants typed by tapping keys with one foot, while standing on the other foot.
Typing the first character started the timer. Correct key presses turned the letter in
the display green, incorrect key presses red. In addition, a brief sound indicated
whether a key press was correct or incorrect. Participants had to retype erroneously
entered letters until they got it right, but did not have to delete erroneous entries using
backspace. Typing the trailing period stopped the timer.

Procedure

Participants typed the sentence twice on each of three keyboards for an overall number
of six repetitions. The order of keyboard sizes was counterbalanced. Finally, par-
ticipants filled in a questionnaire. All participants completed the study in less than
10 minutes.

Participants

We recruited 26 participants (9 female) for this study. Participants were between 19

and 29 years old.

Apparatus

We used the same setup as in the previous studies.

Results

Figure 6.15 summarizes error rates and task times for the regular buttons of the three
keyboards. Error rates for space bars were comparable (2.0%, 8.6%, and 23.8%). As
expected, error rate and task time increased with decreasing button sizes. Note that
about half of the error rate came from tapping outside the keyboard, a strategy we saw
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participants employ to avoid tapping incorrect letters. Task time mirrors the trends
seen in error rate.
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Figure 6.15: (a) error rate per letter (error types top-to-bottom: outside keyboard,
neighboring key, wrong key) (b) time per letter.

Figure 6.16 shows the complete targeting data of all trials. The fact that contact point
cluster centroids are centered on button centers suggests that all remaining error is
indeed noise, rather than a systematic effect, such as in the case of touch input (see
Figure 3.5).
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Figure 6.16: The contact points for all trials of all participants.

In the final questionnaire, half of the participants selected the large keyboard as their
favorite. Interestingly, 10 of 26 participants picked the medium keyboard, where they
found buttons easier to reach. The remaining 3 participants were indifferent between
the large and the medium keyboard.

Discussion

With error rates close to 30%, the 1.1 cm keys on the small keyboard were clearly too
small. The 3.1 cm buttons of the medium keyboard, however, might be acceptable for
some applications where packing density is more important than error rate. Using a
tiled layout, a 3×4 m2 floor could pack 10,000 of such interactive objects, supporting
our goal of bringing highly complex applications to multi-touch surfaces.
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The large keyboard, finally, offers very good error rates below 2.9%, which is fully
comparable to error rates on interactive tabletops. Note that at 5.3 cm, buttons on the
large keyboard are still quite compact and an order of magnitude smaller than the 1

′′+
buttons required by the projection model.

This completes our effort to transition multitouch input techniques from surfaces, such
as tabletops to multitouch floors. FTIR and high-resolution camera input played a key
role here, e. g., because they allow the floor to distinguish users and thus personalize
the interaction. High-resolution FTIR enables a range of other possibilities, such as 3d

reconstruction, which we will explore in the remainder of this chapter.

6.7 algorithms for processing per-pixel pressure input

We now discuss the underlying algorithms that enable user identification and tracking
of foot postures and balance. We also demonstrate how the same algorithms can be
used to implement a simple type of head tracking and to enable foot interaction with
high degrees of freedom.

6.7.1 General Processing

Figure 6.17 illustrates the pipeline we implemented to process users’ shoe soles. By
using higher illumination intensity for FTIR than for front DI (Figure 6.4c), we can
extract the FTIR image from the raw image by thresholding (Figure 6.17b). (c) We extract
the DI image by replacing the FTIR portion in the raw image with shoe color, i.e. black,
and (d) find connected components on the thresholded DI image. Fitting an ellipse
onto the blob determines the main axis of the sole, from whose end we determine the
front of the shoe by testing which half of the convex hull of its contour is wider. The
previous two steps also produce the shoe rotation. (e) The oriented bounding rectangle
finally yields the width and height of the user’s shoe sole.

Additional processing is done based on the requirements of the application, as we
discuss in the following.

6.7.2 Identifying Users

We implemented a preliminary identification algorithm for our table-size prototype.
Our system identifies users based on their shoe soles by searching through a database
of shoe prints for a match upon observing a shoe sole on the floor. Our algorithm starts
by pre-selecting candidates from the database based on similarity in sole length, width,
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DI =raw - FTIRraw
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Figure 6.17: Sole processing and user identification. (a) Raw image, (b) thresholding
extracts FTIR, (c) DI = raw minus FTIR, (d) Thresholding (blur(DI)) with convex hull
and widths, and (e) annotated. (f) When the floor sees a pair of soles for the first time,
it asks for identification.

and surface area, as well as the sole’s grayscale histogram. We then perform a series of
comparisons by sliding template images over the observed image to find the position
with the best match in the image. If the absolute difference between the two images is
below a threshold, the footprint in the database is considered a match. FTIR brings
out the unique line patterns and logos that shoe makers embed into their soles, which
helps recognition.

If a foot print is not recognized for several frames, it is added as a new pair of shoes
to the database. At this point it is labeled anonymous and assigned a random ID.
In addition, the system brings up a dialog that allows users to identify themselves
(Figure 6.17f). This allows the floor to assign the user’s name to the new shoes.

6.7.3 Analysis of Pressure Distribution

All other functions, such as walking vs. tapping and head tracking, are computed
based on the pressure distribution of soles on the floor. All functions have in common
that they partition the FTIR image of each foot into one or more cells, estimate the
physical weight resting on each cell, and then compare this cell pressure with other
cells.

Our algorithm to process pressure distributions within a shoe sole proceeds as follows.
(1) Mask the FTIR image with the DI blob. (2) Partition the FTIR image into a set of
cells. (3) Translate pixel color into pressure. It is important to compensate for the
non-linear pressure response of FTIR by applying the inverse of the pressure-to-pixel
brightness function shown in Figure 6.18 (left). We created this function by sampling
the material-specific pressure response of our floor. (4) Sum up the pressure per pixel
per cell. (5) Compare cell pressure with other cells.
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We can implement the aforementioned functions using an appropriate partitioning of
cells.
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Figure 6.18: Left: We found the brightness response of our stack-up to be roughly
logarithmic with pressure (acrylic waveguide with Tectosil 500 silicone and a Rosco
projection screen). Right: Using FTIR, “walking forward” is identified as a heel-ball
pressure sequence.

6.7.4 Classifying Tapping Versus Walking

In order to distinguish walking from taping, we partition the user’s sole into front
(“ball”) and back (“heel”). Now we port the algorithm presented by Choi and Ricci [27]
to FTIR: The floor observes the pressure patterns of the two partitions over time and
when it sees “nothing, ball, entire foot, heel, nothing,” it classifies the user as walking
(Figure 6.18 right); if it sees “nothing, ball, nothing,” it classifies the user as tapping.

6.7.5 Tracking the User’s Center of Gravity

Unlike immersive and stereoscopic installations, such as CAVEs [29] or smart rooms
[25], the position of body or head plays only a subordinate role in the context of direct
manipulation scenarios. Nonetheless, FTIR-based pressure sensing allows us to obtain
a simple approximation of the user’s posture.

Again, we partition users’ soles into front and back, which gives us four partitions
whenever both feet are in contact with the floor. We determine the user’s left-right
balance as the pressure difference between the partitions of each foot; we determine the
user’s front-back balance as the pressure difference between front and back partition.

To enable fish tank virtual reality [161] using our prototype (Figure 6.19a), we recorded
pairs of user head position and pressure distribution for the centered and extreme
forward, backward, left, and right positions. This allows us to compensate for posture
biases and the typical 60:40 pressure ratio between ball and heel. During the fish tank
VR experience, we interpolate angles linearly.
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Figure 6.19: (a) Sensing pressure using FTIR enables fish tank VR. (b) This user is
playing a first person shooter based on balance and foot posture (Unreal Tournament
2004). (c) Subset of the mapping between input pressure distributions and commands.

6.7.6 Additional Degrees of Freedom

Finally, we can create additional degrees of freedom by subdividing soles further.
Figure 6.19b shows a user playing a first person shooter on our prototype, hands-free,
by controlling the game using her feet alone. We obtained 10 degrees of freedom by
subdividing each foot into five zones; we then use a subset of them to implement
functions for moving, strafing, and shooting, a subset of which is shown in Figure 6.19c.
Note that users fire and alt-fire using their left and right large toes. Surprisingly, this
continues to work inside of shoes.

6.8 floor sensing in an entire room to reconstruct activity

In the previous section, we described how we reconstruct the user’s center of gravity
from the distribution of pressure inside the user’s shoe prints. We now generalize
our approach to an entire room and explore how much the room can infer about its
inhabitants and their activity as well as passive objects solely based on the pressure
imprints people and objects leave on the floor. Similar to how we reconstructed
3d finger poses from users’ fingerprints in Chapter 5, we intend to reconstruct the 3d

configuration of people and objects from just the 2d imprints they leave on a multitouch
floor.

To obtain 3d information from the 2d touch contacts that people and objects leave on
the floor, we apply the same principles as in previous chapters. We first analyze the
texture of 2d touch contacts and classify each touch contact to obtain the type of object
that is making contact with the floor. When we detect a shoe sole or a marker pattern,
the system matches it against a database to determine who the user is or which object
it is, respectively. Finally, we derive which part of the user is in contact with the floor
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and what the pressure distribution is in order to reconstruct users’ 3d configuration
inside the room.

shelf

sofa

TV

user sitting

user  standing
user sitting

Figure 6.20: Left: Gravity pushes people and objects against the ground, where they
leave imprints that we sense using a high-resolution per-pixel pressure sensor that
spans the floor in an entire room. Right: Our system GravitySpace analyzes the 2d

pressure image (here the scene on the left), which contains a set of imprints (circles,
lines, and text added for clarity). From the imprints, GravitySpace reconstructs the 3d

configuration of users and objects inside the room.

Our approach is based on the general principle of gravity, which pushes people and
objects against the floor, causing the floor to sense pressure imprints as illustrated in
Figure 6.20. Our 2d pressure sensor is thereby still limited to sensing only contact with
the ground, but concludes 3d information about the objects that are in contact with it.
We therefore refer to our system as GravitySpace.

6.9 gravityspace : 3d activity reconstruction from 2d touches in a room

Figure 6.1 shows our floor installation running GravitySpace. Three users and three
pieces of furniture are on the floor, which GravitySpace detects. To illustrate what the
system senses and reconstructs about the physical world, the prototype displays its
understanding of the physical world using a mirror metaphor, so that every object stands
on its own virtual reflection. Based on this mirror world, we see that GravitySpace
recognizes the position and orientation of multiple users, the identity of users as
demonstrated by showing their personalized avatars, selected poses, such as standing
and sitting on the floor and on furniture, and tracking of leg movements to interact
with virtual objects, here a soccer ball.

GravitySpace updates in real-time and runs a physics engine to model the room above
the surface. All the tracking and identification shown in Figure 6.1 is thereby solely
based on pressure imprints all objects leave on the floor.
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Figure 6.20 (right) shows the scene as perceived by GravitySpace. This is the only
information GravitySpace uses to reconstruct the scene above the ground. GravitySpace
implements four main concepts: (1) recognition of poses based on classifying contact
types, such as hands or buttocks, and their spatial arrangement, (2) prediction of leg
movements by analyzing pressure distributions, and (3) pressure-based markers that
allow GravitySpace to detect objects, such as furniture. In addition, GravitySpace
recognizes users based on their shoe prints, thereby extending the concepts described
in Section 6.7.2, but optimized for the 20 times larger floor size and a larger number of
simultaneous users.

6.9.1 Prototype Hardware: A Room-Size 8 m2 Floor Installation

Figure 6.21 shows our current GravitySpace prototype hardware, which is a essentially
a scaled-up version of our previous table-size prototype (Figure 6.5 in Section 6.2.2). It
also senses pressure based on FTIR using a camera located in the room below the floor
surface. The interaction surface measures 8 m2 in a single seamless piece and delivers
12 megapixels overall pressure sensing resolution at a pixel size of 1×1 mm2. Our
prototype also offers 12-megapixel back projection. While not necessary for tracking, it
allows us to visualize the workings of the system as shown in Figure 6.1.

Figure 6.21: The prototype we use in
GravitySpace senses per-pixel pressure
input across the floor of an entire room.
The system senses 25 dpi pressure input
and projects across an active area of 8 m2

in a single seamless piece.

IR LEDs

projector
camera

We expect sensing hardware of comparable size and resolution to soon be inexpensive
and mass available, for example in the form of a large, thin, high-resolution pressure
sensing foil (e. g., UnMousePad [132]). We envision this material to be integrated into
carpet and as such installed in new homes wall-to-wall. Since the technology is not
quite ready to deliver the tens of megapixel resolution we require for an entire room,
our FTIR-based prototype allows us to explore our vision of tracking based on pressure
imprints today.
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6.9.2 Pressure-Transmitting Furniture

To allow our floor installation to not only sense people when they are in direct contact
with the floor, but also detect them when they are sitting on passive objects, such as
furniture, we complemented our floor prototype with custom-made furniture. While
such furniture could use active pressure sensing [105], we have created passive furniture
that transmits high-resolution pressure down to the floor, rather than sensing it actively.
This offloads sensing to a single centralized active sensing component, in our case the
floor itself. Passive furniture also reduces complexity and cost, while the absence of
batteries and wires makes them easy to maintain.

Everyday furniture already transmits pressure, but on a level that is too coarse to
resolve fine-grained structure. Current furniture imprints are limited to representing
overall weight and balance. While locating the center of gravity has been demonstrated
by many earlier research systems (e. g., such as VoodooIO [155]) or commercial systems
(e. g., Wii Balance board), this limits our ability to detect activities taking place on top
of the furniture, such as sitting on a sofa.

In order to recognize identity and poses of the object on top in more detail, we have
created the seating furniture shown in Figure 6.1. All the pieces transmit pressure
in comparably high resolution. We accomplish this by using an array of “transmit-
ters.” Transmitters have to offer sufficient stiffness to transmit pressure (and also to
support the weight of the person or object on top). Figure 6.22a shows a cube seat
we constructed: Using regular drinking straws as transmitters makes the furniture
light and sturdy, but allows propagating pressure input from the top of the seat to the
bottom. 1,200 straws (8 mm in diameter) fill each cube seat; 10,000 fill the sofa, which
is based on the same principle. Straws are inexpensive (e. g., e 80 for filling the sofa).
The backrest and armrest of the sofa are pressure-sensitive as well—they are filled with
longer “sangria” drinking straws. We obtain their curved shape by cutting the straws
to length a layer at a time using a laser cutter.

Ěa cb

Figure 6.22: (a) Each cube seat is filled with 1,200 drinking straws. Here, one of the
steel rods that form the marker pattern is inserted. (b) The cube leaves this pressure
imprint on the floor. GravitySpace detects the (c) marker points and recognizes (d) the
cube.
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Straws are held together by a frame made from 15 mm fiberboard. We stabilize the
straws in the box using a grid made from plywood connected to the frame, which
essentially subdivides the box into 3×3 independent cells. The grid minimizes skewing,
thus preventing the box from tipping over. We cover the bottom of the box with Tyvek,
a material that crinkles but does not stretch. This prevents the bottom from sagging,
yet still transmits pressure. In addition to the leather, we add a thin layer of foam as
cushioning to the top of the cube seats for added comfort.

Weight shifts on top of the box can cause the box to “ride up” on the straws, which
can cause an edge of the box to lose traction with the ground. To assure reliable
detection, we create markers from weight rods that slide freely in plastic tubes; the
tubes themselves are held in by the Tyvek. We use an asymmetric arrangement of rods
to assign a unique marker ID to each piece.

6.10 algorithms

Figure 6.23 summarizes the pipeline we implemented to process touches that occur
on our floor, including recognizing, classifying and tracking events, users and objects
based on the pressure patterns they leave. We thereby build on the algorithms we
described in Section 6.7 and optimize them to process the entire 12 megapixel image in
real-time (25 fps).
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Figure 6.23: GravitySpace processes all input using this pipeline to recognize and track
users, and objects.

GravitySpace recognizes objects with 2d textures, such as body parts or shoe prints by
extracting the imprint features they leave in the raw pressure image. For objects with
little discernible texture or changing texture (e. g., due to users sitting on furniture), we
add features using pressure-based markers.

GravitySpace implements three main functions: (1) 3d Pose reconstruction by classify-
ing 2d pressure clusters, (2) estimating users’ joint locations in 3d based on 2d pressure
distributions and inverse kinematics and (3) user identification based on shoe prints.
The following sections detail our processing pipeline and explain how we reconstruct
all this information from the pressure intensities the platform observes.
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6.10.1 Step 1: Pre-Processing Pressure Images

All processing starts by thresholding the pressure image to remove noise after sub-
tracting a static background. Our algorithm then segments this image and extracts
continuous areas of pressure by finding connected components. In the next step,
GravitySpace merges areas within close range, prioritizing areas that expand towards
each other. We call the result pressure clusters. A pressure cluster may be for example a
shoe print or the buttocks of a sitting user. GravitySpace then tracks these clusters over
time.

6.10.2 Step 2: Identifying Furniture Based on Markers

Pressure imprints of larger objects, such as furniture, provide little distinguishable
texture on their own. In addition, the overall texture of seating furniture changes
substantially when users sit down. GravitySpace therefore uses dot-based pressure-
markers to locate and identify furniture. Figure 6.22b shows the imprints of a sitting
cube that we equipped with markers. These markers produce five or more points and
are arranged in a unique spatial pattern that is rotation-invariant. We designed and
implemented marker patterns for a sofa, several sitting cubes, and shelves.

To recognize markers, GravitySpace implements brute-force matching on the locations
that have been classified as marker points, trying to fit each registered piece of furniture
into the observed point set and minimizing the error distance. To increase the stability
of recognition, our implementation keeps objects whose marker patterns have been
detected in a history list and increases the confidence level of recently recognized
objects. We also use hysteresis to decide when marker detection is stable based on the
completeness of markers and their history confidence.

6.10.3 Step 3: Classifying Pressure Clusters Based on Image Analysis

For each pressure cluster in the camera image, GravitySpace analyzes the probability of
being one of the contact types shown in Figure 6.24. GravitySpace distinguishes hands,
knees, buttocks, and shoes, thereby further distinguishing between heel, tip, and edge
of a shoe. These probability distributions are an essential part of the subsequent pose
recognition. Areas covered by furniture pieces are ignored for this classification in
order to minimize noise.

In order to classify each pressure cluster, GravitySpace extracts 16 fast-to-compute
image features from the respective area in the image, including image moments,
structure descriptors using differences of Gaussians, as well as the extents, area, and
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aspect ratio of the bounding box around the cluster. We trained a neural network that
assigns probabilities for each type of contact to each cluster.

ball
shoe
rim

heel ďƵƩŽĐŬƐŬŶĞĞ ŚĂŶĚshoe

Figure 6.24: Left: GravitySpace assigns each pressure cluster the probability of being
one of these contact types. Right: GravitySpace uses Harris corner detection and SIFT
to match detected shoe prints against a database of registered users.

6.10.4 Step 4: Identifying Users Based on Shoe Prints

Whenever the users’ feet are in contact with the ground—for example when standing
or sitting, but not when lying—GravitySpace will recognize users by matching their
shoe prints against a database of shoe soles associated with user identities. As users
register with both of their shoes, our approach also distinguishes left and right feet.

Due to the large floor area, our previous approach to user identification as explained
in Section 6.7.2 is not sufficient on GravitySpace. Identifying shoe soles using simple
template matching does not scale reliably to the area GravitySpace needs to support,
both in terms of speed as well as accuracy.

To match shoe prints with the same resolution as previous systems (1 mm per pixel),
GravitySpace uses an implementation of SIFT [91] that runs on the GPU to achieve
interactive rates. Using Harris corner detection as the feature extractor and SIFT as the
descriptor algorithm allows us to match shoes with rotation invariance. To identify a
user by the shoe sole, GravitySpace counts the number of features that match in each
of the shoe images in the database and the observed shoe print as shown in Figure 6.24.
A feature thereby matches if the angular distance between the two descriptor vectors is
within close range. Since the number of detected features varies substantially between
different sole patterns, we normalize the distance by dividing by the maximum number
of features in either observed or database image.

Stitching a Shoe Imprint from a Sequence of Frames

When user walk on the floor, only a small part of their shoe appears in the image at
first and then becomes larger as their shoe sole rolls over the floor from heel to toe
(Figure 6.18 right). Since the camera consecutively captures images of each such partial
shoe imprint, GravitySpace merges all partial observations in successive frames into an
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aggregated imprint, which allows us to capture an almost complete shoe sole. This
concept is also commonly used to obtain a more encompassing fingerprint by rolling a
finger sideways while taking fingerprints.

Recovering Shoe Orientation Based on Phase Correlation

To predict the location of the user’s next steps when walking, GravitySpace leverages
the orientation of the shoes that are on the floor. GravitySpace determines shoe
orientations directly after matching shoe prints by registering front and back of each
database shoe print with the observed shoe on the floor. Our system transforms both
shoe prints into spectrum images and applies log polar transforms to then compute
the translation vector and rotation angle between the two shoe prints using phase
correlation. All shoes in the database thereby have annotated locations of heel and toes,
which happens automatically upon registration by analyzing the direction of walking.

6.10.5 Step 5a: Pose Recognition Based on Spatial Configurations of Pressure Clusters

To classify body poses from the observed pressure imprints, GravitySpace performs
pose matching based on the location and classified type of observed pressure clusters.
For example, GravitySpace observes the spatial configuration of pressure clusters
shown in Figure 6.25a, i. e., the imprints of buttocks, two feet, and two hands as a user
is sitting on the floor.

To match a pose, GravitySpace uses a set of detectors, one for each pose that is registered
with the system (Figure 6.25c). Each detector is a set of rules based on contact types and
their spatial arrangement. GravitySpace currently distinguishes five poses: standing,
kneeling, sitting on the floor, sitting on cube seat or sofa, and lying on a sofa.

ŚĂŶĚ

ďƵƩŽĐŬƐ

shoe

shoeshoe

ŚĂŶĚ heel

a cb

Figure 6.25: (a) Based on the classified pressure clusters and their spatial arrangement,
GravitySpace recognizes (b) a sitting and a standing user. (c) GravitySpace currently
detects these four poses.

GravitySpace feeds all pressure clusters to all detectors. Each detector creates a set of
hypotheses. Each hypothesis, in turn, contains a set of imprints that match the pose
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described by the detector. For example, hypotheses returned by the sitting detector
contain buttocks and two feet. Optionally, there may also be two hands if users support
themselves while leaning backwards as shown in Figure 6.25a. Each detector returns
all possible combinations (or hypotheses) of imprints that match the pose implemented
by this detector. Each hypothesis thus explains a subset of all imprints. We compute
the probability of a hypothesis by multiplying the classification probabilities of all
contained imprints with a pose-specific prior.

From these individual hypotheses (explaining a single pose), we compute a set of complete
hypotheses; each complete hypothesis explains all detected imprints by combining
individual hypotheses. We calculate the probability of a complete hypothesis as joint
probability of individual hypotheses, assuming that individual poses are independent
from each other. We track complete hypotheses over multiple frames using a Hidden
Markov Model with complete hypotheses as values of the latent state variable.

6.10.6 Step 5b: Tracking Based on Pressure Distributions

If possible, GravitySpace also tracks body parts that are not in direct contact with
the floor, such as the locations of feet above the ground while walking or kicking.
GravitySpace also builds on the tracking of body tilt that we explained in Section 6.7.5,
for example when a user leans left or right while sitting. In GravitySpace, this allows
for predicting the user’s steps before making physical contact with the floor, which
reduces the tracking latency of our system. It also allows sensing interactions that occur
above the floor, such as users interacting with virtual objects. Obviously, our approach
cannot sense events taking place in mid-air, such as raising an arm or changing the
gaze direction.

We estimate the location of in-air joints by analyzing the changing centers of gravity
within each pressure cluster. We then try to best fit a skeleton to the computed locations
of all joints using a CCD implementation of inverse kinematics. GravitySpace finally
visualizes the reconstructed body poses with 3d avatars as shown in Figure 6.1.

Deriving the Location of Feet Above the Ground

To infer the location of users’ feet when they are above the ground, GravitySpace
reconstructs its location by analyzing the changing pressure distribution of the other
foot, which is on the ground as shown in Figure 6.26a–b. Our algorithm first calculates
the vector from the center of pressure of the cluster aggregated over time to the center
of pressure of the current cluster. This vector corresponds to the direction that a
person is leaning towards, and is used to directly set the position of the foot in mid-air.
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We again derive a skeleton using inverse kinematics, which enables animating the
remaining joints of the avatar for output.

a b c Ě e

Figure 6.26: GravitySpace derives (a) the location of a foot above the floor based on
(b) the pressure distributions of the user’s other foot. (c) We track the user’s center of
gravity based on the joint center of pressure of both feet (d) and (e).

Tracking Body Tilt

To track the user’s body tilt, GravitySpace observes multiple pressure clusters as
shown in Figure 6.26c–e. The system first computes the joint center of pressure
over all pressure clusters of a user by summing up zero and first order moments of
the individual pressure images. We then exploit that the center of pressure directly
corresponds to a body’s center of gravity projected on the floor. Once the center of
gravity is determined, GravitySpace sets the corresponding endpoints of the skeleton’s
kinematic chains; all other joints then follow automatically based on the inverse
kinematic.

6.11 evaluation

We conducted a technical evaluation of three system components: pressure cluster
classification, user identification, and pose recognition. In summary, the algorithms
of our prototype system allow for (1) distinguishing different body parts on the floor
with an accuracy of 92.62% based on the image analysis of 2d pressure clusters,
(2) recognizing four 3d body poses with an accuracy of 86.12% based on type and
spatial relationships between 2d pressure clusters, and (3) identifying 20 users against
a 120-user database with an accuracy of 99.82% based on shoe-print matching.
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6.11.1 Pressure Cluster Classification

To evaluate pressure cluster classification, we trained a neural network with data from
12 participants, and tested its classification performance with data from another four
participants.

Training Data

We asked 12 participants to walk, stand, kneel, and sit on the floor, in order to collect
data of the seven different contact types required for pose recognition, namely hand,
shoe (we distinguish between the entire shoe, ball, rim, and heel), knee, and buttocks.
In total, we collected 18,600 training samples.

shoe
ball

shoe rim
heel

ďƵƩŽĐŬƐ
ŬŶĞĞ
ŚĂŶĚ

shoe ball shoe rim heel ďƵƩŽĐŬƐ ŬŶĞĞ ŚĂŶĚ
1088 1 2 0 0 0 1

17 200 2 18 1 0 12
14 1 297 5 0 0 1
2 83 35 101 0 0 0

23 3 0 1 254 3 6
0 17 3 3 0 366 2
7 0 31 21 41 58 459

Table 6.1: Confusion matrix for pressure cluster classification.

Test Data

Following the same procedure, we collected data from another four participants for
testing. This resulted in 3,127 samples.

Evaluation Procedure

We manually annotated all training samples to provide ground truth. We then fed
the test data into the trained neural network, taking the contact type with the highest
probability as outcome. Note that our algorithm does not discard the probability
distributions provided by the neural network, but feeds them into the following pose
recognition as additional input.
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Results

Our approach achieved a classification accuracy of 86.94% for the seven contact types
shown in the confusion matrix of Table 6.1. If the entire shoe, ball, rim, and heel are
grouped and treated as a single contact of type shoe, as done by the pose recognition,
classification accuracy reaches 92.62%.

6.11.2 Pose Recognition

We evaluated our pose recognition implementation with five participants. Since pose
recognition is based on descriptors of spatial contact layouts, no training data was
required for this evaluation.

Test Data

We collected data from five participants, who each performed the four poses shown
in Figure 6.25c, including standing/walking, sitting on the floor, sitting on furniture,
and kneeling. For each participant and pose, we recorded a separate pressure video
sequence.

Evaluation Procedure

To provide ground truth, we manually annotated all frames with the currently shown
pose. We then ran our algorithm on all frames of the recorded videos, and compared
the detected poses to ground truth annotations.

Results

86.12% (SD = 13.5) of poses were correctly identified within a time window of 1.5 s
as tolerance. In comparison, FootSee achieves recognition rates of 80% (tested with a
single subject) for five standing only activities [175].

6.11.3 User Identification

We determined the user identification accuracy of our implementation with 20 partici-
pants.
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Registration

To populate the user database, each participant walked in circles for about 35 steps
on the floor. GravitySpace now selected one left and one right shoe print for each
participant, choosing the shoe print with the minimum distance in the feature space
compared to all other shoe prints of the same participant and foot.

Test Data

After a short break, participants walked a test sequence of about 60 steps. Shoe prints
were in contact with the floor for an average of 0.92 s (SD = 0.13). Participants then did
another round. This time, however, they were instructed to walk as fast as possible,
resulting in a sequence of about 70 steps with a lower average duration of 0.38 s (SD =
0.11).

ŶƵ
ŵ
ďĞ

ƌ�Ž
Ĩ�Ɛ
Ăŵ

Ɖů
ĞƐ

ƐŚŽĞƉƌŝŶƚ�ĂƌĞĂ�;ĐŵϸͿ

ϭϬϬථй

ϰϬථй

ϮϬථй

Ϭථй

ϲϬථй

ϴϬථй

ŝĚ
ĞŶ

ƟĮ
ĐĂ
ƟŽ

Ŷ�
ĂĐ
ĐƵ
ƌĂ
ĐǇ

slow (20)

fast (120)

fast (20)
slow (120)

slow
fast

2000

0

400

800

1200

1600

1000 200 100 200

Figure 6.27: Identification accuracy for walking slow and fast, using databases of 20

and 120 users. Aggregating multiple frames leads to more complete shoe prints and
better identification accuracies.

Evaluation Procedure

We evaluated the identification performance by running our algorithms on the recorded
test data. Obviously, the slower participants walked, the longer their feet were in contact
with the floor, and the more frames were available. The part of the foot that is in contact
with the floor varies while walking, rolling from heel to toe. As described above, our
algorithm reconstructed shoe prints by merging successive pressure imprints. We ran
our identification algorithms on all aggregated imprints with an area greater than
30 cm2, which is the minimum area for discernible shoe contacts as determined during
the previous pressure cluster evaluation.
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Results

We evaluated the test set against two databases, one containing 20 study participants,
and one enlarged with data from 100 additional people, who were lab members and
visitors. Figure 6.27 shows the identification accuracy using these two databases for
both walking slow and fast. As expected, larger shoe prints aggregated from more
frames resulted in better recognition. For the 20-user database, the classification
accuracy reached 99.94% for shoe prints with an area between 180 and 190 cm2 (the
average area of shoe prints). When walking fast, recognition rates slightly dropped
to a maximum classification accuracy of 99.19%. This is expected as shoe prints were
more blurry.

We then reran the classification against the 120-user database. Our approach correctly
identified shoe prints with 99.82% accuracy prints when walking slowly, and with
97.56% accuracy when walking fast. In comparison, the Smart Floor by Orr and Abowd
identifies users based on their footstep force profiles and achieves recognition rates of
93% for 15 users [111]. Qian et al. correctly recognize 94% of 10 users based on gait
analysis [122].

Speed

On average, feature extraction took 47.7 ms (SD = 11.4) per shoe print, which is
independent of the number of registered users. Identification took 251.4 ms (SD = 81.2)
using a database of 120 users. Each additionally registered user currently increases the
runtime by 2 ms.

To maintain a frame rate of 25 fps, GravitySpace runs user identification asynchronously.
Before identification is completed, users are tracked based on heuristics (e. g., distance
and orientation of shoe prints). Once identified, user tracking relies on this informa-
tion. To reduce delays due to identification, GravitySpace caches recently seen users:
New contacts are first compared to this short list of before falling back to the entire
participant database.

6.11.4 Benefits and Limitations

Compared to traditional camera-based solutions, the pressure-based floor sensing
approach we employ in GravitySpace offers four main benefits.

First, floor-based sensing provides consistent wall-to-wall coverage of rooms. In
contrast, camera-based systems have a pyramid-shaped viewing space. Motion capture
installations resolve this by leaving space along the edges, which is impractical in
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regular rooms and leads to uneven or spotty coverage. Floor-based tracking can be flat,
integrated into the room itself, and provides consistent coverage across the room.

Second, floor-based tracking is less susceptible to occlusion between users. The
perspective from below is particularly hard to block—simply because people tend
to stand next to each other, resulting in discernible areas of contact. From a more
general perspective, the benefit of pressure sensing is that mass is hard to “hide.” Mass
has to manifest itself somewhere, either through direct contact or indirectly through
another object it is resting on. Camera-based systems, in contrast, may suffer from
users occluding each other if the cameras mounted in one spot (e. g., LightSpace [170]).
Systems distributing multiple cameras around a room still suffer from dead spots, such
as in the midst of groups of users [101].

Third, floor-based sensing allows for the use of simpler, more reliable recognition
algorithms. Our approach reduces the recognition problem from comparing 3d objects
to comparing 2d patterns, because all objects are flat when pressed against a flat surface.
Objects can therefore only change in their 2d translation, 1d rotation in the plane, and
the pressure intensities within, which allow us to match objects using algorithms from
digital image processing [31, 50].

Fourth, pressure-based tracking is less privacy-critical. While floor-based sensing
captures a lot of information relevant to assisted living applications (e. g., [82]), it never
captures actual photos or video of its inhabitants. This mitigates privacy concerns,
such as recording users while getting dressed or using the bathroom.

On the other hand, our floor-based approach is obviously limited in that it can recognize
objects only when they are in direct contact with the floor. While we reduce the impact
of these limitations using 3d models based on inverse kinematics, events taking place
in mid-air can obviously not be sensed, such as the angle of an arm being raised or a
user’s gaze direction. The approach is also inherently subject to lag in that the floor
learns about certain events only with a delay. We cannot know the exact position of a
user sitting down until the user makes contact with the seat. As we place the avatar in
between, it is subject to inaccuracy.

6.12 conclusions

In this chapter, we have presented high-resolution FTIR-based floors as a means to
create interactive multi-touch surfaces beyond the size of tabletop computers. We made
first steps toward enabling the interaction model of touch, i. e., direct manipulation,
on such a floor. FTIR played the key role in this process, as it allowed us to reliably
distinguish interactions from walking and because it provides the high accuracy
required to acquire and manipulate small objects. We argue that the combination
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of small objects (3–6 cm, comparable to objects on tabletops) with the dramatically
larger scale of interactive floors forms an interesting platform for enabling complex
applications that deal with ten-thousands of objects.

Combining high-resolution FTIR with a projected floor also resulted in the design
of additional interactions and capabilities for indoor sensing. One of them is user
identification based on sole patterns, which works in part because users are bound
to floors by gravity—very different from tabletops. We showed that our floor allows
classifying input events into body parts or passive objects and that we can analyze the
pressure distribution inside such contacts to extract more degrees of freedom from
input events on multitouch floors.

Finally, we have shown how to use the 2d per-pixel pressure image we sense to track
people and furniture in 3d on a high-resolution 8 m2 multitouch floor. While our sensor
is limited to sensing contact with the surface, we have demonstrated how to conclude
a range of objects and events that take place above the surface, i. e., in the 3d space of
the room. This includes reconstructing 3d user poses and 3d interactions with virtual
objects above the floor. We also demonstrated how to extend the range of this approach
by sensing through passive furniture that propagates pressure to the floor.
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C O N C L U S I O N S A N D N E X T S T E P S

In this dissertation, we have shown how to enable flat 2d devices to sense 3d input
upon touch and implement 3d natural user interfaces. Offering interaction through
such 3d interfaces had previously been limited to either stationary installations or
setups that impede mobility. With our contributions, we bring this type of sensing to
the familiar flat form factor of mobile devices. Since the fact that these devices are flat
is the reason that has allowed them to achieve mass adoption and mobility in the first
place, we have enabled 3d natural user interfaces to also find application in mobile
scenarios.

Figure 7.1: Our main contribution is reconstructing 3d information from 2d touch input.
We analyze the 2d imprints of all touch contacts at a high resolution, which provides us
with the texture of each object. We then determine which part of the object caused the
visible imprint to reconstruct its 3d pose—a feature in the 3d space above the surface.
Left: In the case of finger input, the texture represents the user’s fingerprint, which we
use to identify the user biometrically and to reconstruct the 3d finger pose. This allows
touch devices to detect touch input with three times higher accuracy than existing
devices. Right: On multitouch floors, we analyze the texture to identify users based
on their shoe soles, to detect furniture, and to classify all imprints to derive users’ 3d

body poses using the arrangement of imprints and inverse kinematics.

7.1 main contribution : reconstructing 3d information from 2d input

Our main contribution is that we obtain the 3d information by reconstructing it from
the data captured by flat devices: 2d data from a touch sensor. We have demonstrated

135
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our approach on small and table-size platforms, commonly operated through touch
input using fingers. We have also shown that our approach generalizes beyond such
devices to larger touch devices, such as smart rooms that detect touch from users’ feet
or other body parts, as well as passive objects.

The core element of our approach, reconstructing 3d from 2d touch, is considering
touch input not only as spatial input modality, but also extracting the texture each
touching object leaves on a surface as shown in Figure 7.1. The texture of each contact
thereby is a manifestation of the user’s body part that is touching the device in a
particular 3d input pose. By analyzing the 2d texture and classifying its contents,
we can reconstruct additional degrees of information about the objects that touch the
device, i. e., objects that live in the 3d space around it.

One engineering outcome of our approach is touch input as a high-precision input
modality on touch devices. By analyzing touch contacts on a fingerprint level, identify-
ing the user, and reconstructing the user’s finger in 3d, we have substantially increased
the accuracy with which devices detect spatial touch input. Our approach allows users
to reliably touch targets as small as 4.3 mm per side, which is a threefold increase
in accuracy compared to all mobile devices that are in use today. With respect to
the size of elements in graphical user interfaces, this allows devices to reliably and
accurately sense users’ touch input for elements that are an order of magnitude smaller.
These results indicate that touch input really is a 3d input operation; since current
touchscreen devices implement touch detection as an operation in 2d, they perceive
additional degrees of freedom as input error. This explains why touch input, so far,
has been considered an inaccurate input modality.

By introducing our new 3d perspective on touch, we have made a contribution in the
theoretical domain. By investigating how users conceptually acquire targets using touch,
we derived the perspective that users target by aligning visual features with a target
on the screen—not by using the contact area between their finger and the device itself,
as implemented in all current mobile touch devices. Our new model thereby not only
explains the effects we exploit in the high-precision touch devices we presented, but
also explains the error perceived by current touch devices as an effect of parallax. While
users align visual features on the top of their fingers with touch on the screen, current
devices observe the touch contact, i. e., a feature at the bottom of the users’ fingers.

To demonstrate the feasibility of our approach on touchscreens, we presented our
prototype Fiberio, which incorporates displaying output and scanning fingerprint input
into the same surface. The implementation of such a device has been hypothesized
in the human-computer interaction community for over a decade but never realized.
Fiberio achieves these desired capabilities using a new type of surface material for
touchscreens: a fiber optic plate. This material enables Fiberio to use the surface for
both displaying output as well as capturing the reflections needed for fingerprint
scanning. By analyzing the 2d fingerprint, Fiberio identifies each user upon touch
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and reconstructs the 3d rotation of their finger in real-time. This allows Fiberio to
implement high-precision touch input on a fully interactive touchscreen device.

As part of precise touch, Fiberio implements biometric user identification. This finally
enables touchscreens to perform reliable touch-to-user association in collaborative
settings as well as authentication on a per-user-interface element level. It also makes
Fiberio suitable for all scenarios that involve single-display groupware.

The concepts we described in this dissertation transcend the prototype touch devices
we built for the purpose of demonstration and studying. While they have a certain
form factor due to the requirement of sensing touch input at a fingerprint level, our
goal remains to incorporate our concepts into devices that can achieve broad adoption.
For mobile devices, the determining factor of success has been the fact that they are
flat. To implement our concepts on mobile devices, we thus need to reconsider the
touch sensor itself to provide input at a fingerprint resolution.

One type of touch sensing technology that has the potential to be a suitable hardware
platform is in-cell sensing, which places photocells between regular screen pixels of
a screen. In-cell screens perceive the reflection from objects above the display similar
to ThinSight [65], but at a much higher resolution, which allows them to sense the
diminutive structure of fingerprints. A few commercial products have started to use
in-cell sensing (e. g., Microsoft PixelSense [100]), albeit at resolutions that are an order
of magnitude too low for high-quality fingerprint scanning. Sharp showed an image
of a fingerprint captured on a small 2.6′′ touchscreen using in-cell technology at VGA
input resolution [23].

While it is unclear whether the quality and resolution of this technology suffices for
reliable processing, the nature of the technology itself is promising. Once in-cell sensors
achieve the size and resolution required to provide fingerprint scanning on mobile
devices, they will have the potential to implement 3d from 2d reconstruction along
with all the outcomes that we have presented in this dissertation. This, in turn, will
also allow the contributions of our dissertation to be implemented on mass-available
devices.

By extending 3d from 2d reconstruction to a pressure-sensitive multitouch floor, we
have demonstrated that our approach transfers from small touch devices to very large
touch surfaces. We showed how the touch principles known from table-size systems
transfer to large multitouch floors, including touch interaction and precise input using
feet. We also showed that even though input on floors is substantially different from
that on regular touch devices, our system GravitySpace implements the same concepts
that we described for regular touch devices to perform 3d from 2d reconstruction. As
gravity forces all objects onto the floor, GravitySpace senses the resulting 2d imprints
to recognize users and other objects in the room in 3d, including users’ 3d body poses.
Therefore, GravitySpace provides the type of sensing required for 3d natural user
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interfaces on a flat surface, which will be beneficial in environments that require this
form factor, such as future homes.

All of the devices we have proposed in this dissertation implement a variation of
3d natural user interfaces by sensing input on a surface. In conjunction with the
developments of touch sensors outlined above, this will enable these devices to assume
a flat form factor and forgo additional sensors, such as the commonly-used cameras,
which substantially add to the size of current setups and makes them comparably
bulky. By reconstructing 3d information from 2d surfaces instead, a single sensor is
sufficient to provide data and can be integrated directly into the device.

Therefore, reconstructing 3d from the 2d touch allows us to accomplish the type of
sensing required for applications with 3d natural user interfaces on the very surfaces
we stand on or the surfaces that we interact with through touch. Our approach allows
us to use flat touch sensors and therefore sensors that can be embedded into everything:
large surfaces, such as walls and floors, as well as small and mobile surfaces.

7.2 from large devices to flat devices to ultra-small devices

In this dissertation, we have presented a solution to advancing systems that implement
3d natural user interfaces from their current space-requiring form factors to flat form
factors. Such flat touch devices maintain the ability to sense 3d input by reconstructing
it from the 2d touch contacts they observe. As shown in Figure 7.2, our contributions
allow devices to shrink substantially in their z dimension. In our future work, we
plan on exploring next-generation devices that will additionally shrink in their x and y
dimension, thus overall becoming diminutively small.

3D natural user interfaces ŇĂƚ�ĚĞǀŝĐĞƐ͗�ƐŝǌĞ;ǌͿ�՜ 0
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Figure 7.2: 3d natural user interfaces originated in stationary installations. In this
dissertation, we showed how to sense 3d input on flat devices using 2d touch input.
For future work, we plan on exploring the interaction with ultra-mobile devices that
virtually disappear because of their size.
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Two Forces That Drive Form Factors: Mobility vs. Content Consumption

The miniaturization of mobile devices has recently come to a halt, even though interac-
tive devices have traditionally continued to shrink in size. Over the past few decades,
computers have become smaller and now high-performance technology fits in the form
factor of a laptop or even tablet. However, this development has stopped, which is a
result of the two opposing forces that have driven recent developments and that have
now reached a sweet spot. One force has propelled miniaturization with the benefit of
mobility; because of ever-shrinking form factors, devices are now so small that users
carry them in their pockets, such as mobile phones, or wear them on their body, such
as wrist watches. The other force has been the increasing use of mobile devices for
consuming content; continuously increasing device sizes have allowed users to enjoy
media content that benefits from large resolutions on mobile devices, such as photos
and videos. Larger mobile devices also aid users who create content, by offering more
space for interaction.

Extrapolating into the future, we wonder what will be the next force in driving the
evolution of device sizes. Assuming that all three dimensions of future miniature
devices will trend towards zero, one resulting question is what the viable form factors
will be. The goal of our future work is to advance this process and to miniaturize users’
interactive devices so as to still allow those devices to support the tasks offered by
current mobile devices.

We envision a future in which users will get used to technology that is so small and
unobtrusive that it might become reasonable to wear miniature devices at all times.
While devices that are smaller than current mobile devices are within our grasp, such
as smart watches, we are interested in exploring what will happen ultimately.

To start our exploration, we chose a scenario whose context demands such fundamental
changes and thus requires rethinking interaction with miniature devices on a funda-
mental level: implanted devices. In the next chapter, we present an initial investigation
of this topic and embed it in the context of ultra-small future mobile devices.
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O U T L O O K F O R U LT R A - M O B I L E D E V I C E S

This chapter is based on results published in [69].

The transition of interaction with computers from desktop workstations to mobile
devices has been comparably obvious. Users now communicate with one another and
access information on mobile devices—anytime and anywhere.

At the same time, however, there has been another, almost invisible transition to
miniature technology in the medical domain: People have started to receive small
implanted devices for medical purposes, such as pacemakers and hearing aids. While
such devices are invisible to other people, about 1% of the population in the United
States, for example, has implanted pacemakers [51].

In this chapter, we investigate how we could support people that will have future
implanted devices, explore how users might interact with them, and extend the
capabilities of such implants.

LED

vibration motor

b c

a d

e f

Figure 8.1: Implanted user interfaces allow users to interact through human skin.
(a–b) These output devices are implanted underneath the skin of (c) a specimen
arm. (d) Actual photograph of the LED output through the skin. (e) This standalone
prototype senses input from an exposed trackball and (f) illuminates in response.

8.1 interaction with devices implanted underneath human skin

Implanted devices currently do not support interactive tasks. To check on the status of
their pacemakers, for example, users cannot directly interact with the device, but need

141
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to see a physician. If a pacemaker runs out of battery, the patient needs replacement
surgery, which is not only expensive, but comes along with all the risks and side effects
of surgery.

Since it is unclear how a user might interact with an implanted device directly, we
explore four core areas of interfaces that implanted devices provide: accepting input
from the user, providing output to the user, communicating wirelessly with external
devices, as well as wireless powering to avoid the need for physical cable connections.

After discussing the space of possible solutions to each of these four challenges, we per-
form a technical evaluation, where we surgically implant seven devices into a specimen
arm. We evaluate and quantify the extent to which traditional interface components,
such as LEDs, speakers, and input controls work through skin (Figure 8.1b and c). Our
main finding is that traditional interface components do work when implanted under-
neath human skin, which provides an initial validation of the feasibility of implanted
user interfaces.

Motivated by the results, we conduct a small qualitative evaluation using a prototype
device (Figure 8.2 left), for the purpose of collecting user feedback. As a substitute for
actually implanting this device in a live person, we place it under a layer of artificial
skin made from silicon, which affixes on the user’s skin (Figure 8.2 right).

ĂƌƟĮĐŝĂů�ƐŬŝŶƉƌĞƐƐƵƌĞ�ƐĞŶƐŽƌƚĂĐƚŝůĞ�ďƵƚƚŽŶƚĂƉ�ƐĞŶƐŽƌ

vibration motorLEDƐƉĞĂŬĞƌ

Figure 8.2: Left: We covered a prototype device with a layer of artificial skin to collect
qualitative feedback from use in an outdoor scenario (right). Participants received
output triggers through the artificial skin and responded by providing input through
the artificial skin.

The insights from our work extend beyond interactive implanted devices and find
applications to miniature mobile devices as well. Implanted devices share a number of
the properties that recent developments in mobile and wearable technology [146] have
been geared towards: Devices along with the information they store always travel with
the user; there is no need for manually attaching them and the user can never forget or
lose them. Thus, implanted devices are available at all times [136].

We conclude our exploration of implanted user interfaces with a comprehensive
discussion of medical assessment, limitations, and a final outlook.
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8.2 design space of implanted user interfaces

We consider implanted devices as devices that are surgically and permanently inserted
under the human’s skin. Implanting devices that possess user interfaces allows users
to directly interact with them. This enables such devices to support a wide range of
applications and tasks, beyond the medical usages prevalent today.

Implanted devices have several advantages over mobile and wearable devices. First,
users typically carry mobile devices inside pockets. Retrieving them to start interacting
imposes a significant overhead on usage time [9]. As devices shrink to smaller sizes,
researchers have started to incorporate them into clothing [112, 80, 124] and users have
started attaching them directly to their bodies [146, 147]. Implanted devices, in contrast,
do not need to be manually attached to the user’s body. They stay out of the way of
everyday or recreational activities (e. g., swimming or showering). Second, implanted
devices have the potential to be completely invisible. This would avoid any social
stigmas of having such devices. Third, implanted devices, along with the information
they store and provide, always travel with the user; the user can never lose or forget to
take them. The devices and applications become part of the user.

Despite these potential benefits, there has been little or no investigation of implanted
user interfaces from a human-computer interaction perspective. Given the continuous
miniaturization of technology [107], we believe implanted user interfaces could become
a reality in the future. Below, we outline some of the core design considerations, with
the hope of bringing these issues to the attention of the HCI community.

8.2.1 Design Considerations

We see four core challenges associated with implanted user interfaces and their use
through human skin: 1) providing input to and sensing input on implanted devices,
2) perceiving output from and producing output from implanted devices, 3) communi-
cation among implanted devices and with external devices, and 4) power supply to
implanted devices.

8.2.2 Input Through Implanted Interfaces

Since implanted devices sit under the skin, they are not directly accessible through
their interfaces. This makes providing input to them an interesting challenge.

One option is to use contact-based input through the skin, such as a button, which
would additionally offer tactile and audible feedback to the user compared to regular
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taps on various locations of the arm [60]. Tap and pressure sensors allow devices to
sense how strongly touches protrude the skin, while brightness and capacitive sensors
detect a limited range of hover. Strategic placement of touch-based sensors could
form an input surface on the skin that allows for tapping and dragging. Audio is an
alternative implanted user interface. A microphone could capture speech input for
voice activation.

Fully implanted and thus fully concealed controls require users to learn their locations,
either by feeling them through skin or by indicating their location through small marks.
Natural features such as moles could serve as such marks. Partial exposure, in contrast,
would restore visual discoverability and allow for direct input. Exposing a small
camera, for example, would allow for spatial swiping input above the sensor (e. g.,
input generated by the user’s tongue [72, 137]). All such input components, whether
implanted or exposed, are subject to accidental activation, much like all wearable input
components. Systems have addressed this, for example, by using a global on/off switch
or requiring a certain device posture [62].

Alternatives to direct interaction include sensing input from the body. Users can provide
input through flexing their muscles [136] or by focusing their thoughts on one particular
aspect (brain-computer interfaces [172]).

8.2.3 Output Through Implanted Interfaces

Device output typically depends on the senses of sight (i. e., visual signals in the form
of projection), hearing (i. e., audio signals), and touch (e. g., vibration and moving
parts). Stimulation of other senses, such as taste and smell, is still only experimental
(e. g., taste interfaces [144]).

The size constraints of small devices require sacrificing spatial resolution and leave
room for only individual visual signals, such as LEDs. Furthermore, visual output may
go unnoticed if the user is not looking directly at the source. While audio output is not
subject to such size constraints, its bandwidth is similar to the visual output of a single
signal: varying intensities, pitches, and sound patterns [107]. Tactile output of single
elements is limited to the bandwidth of pressure to the body and intensity patterns
(e. g., vibration [174]). Tactile feedback may be particularly suited towards implanted
user interfaces, since it could provide output noticeable only to the host user and no
one else.

Rather than providing direct output, implanted devices could stimulate the user’s
body to provide output to the user. The user would notice such output through
self-observation, such as device-induced body motions (electro stimulation [151]), a
changing sense of balance [44], or speech production [24].
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8.2.4 Communication and Synchronization

To access and exchange data amongst each other or with external devices, implanted
devices need to communicate.

If devices are fully implanted under the skin, communication will need to be wireless.
Bluetooth is already being used to replace wired short-range point-to-point commu-
nication, such as for health applications (e. g., in body area networks [77] for in- and
on-body wireless communication [153]). Wi-Fi, as an alternative, transmits across
longer distances at higher speeds, but comes at the cost of increased power usage and
processing efforts.

Equipping implanted devices with an exposed port would enable tethered communica-
tion. Medical ports are already used to permit frequent injections to the circulatory
system [86]. Ports and tethered connections are suitable for communication with exter-
nal devices, but not amongst two devices implanted at different locations in a user’s
body. Such devices would still require wireless communication.

8.2.5 Power Supply Through Implanted Interfaces

A substantial challenge for implanted devices is how they source energy. As power is
at a premium, implanted devices should employ sleep states and become fully active
only after triggering them.

A simple way to power an active implanted device is to use a replaceable battery. This
is common with pacemakers, which typically need surgical battery replacement every
6–10 years. Rechargeable batteries would avoid the need for surgery, and recharging
could be wireless, through technology known as inductive charging [121].

If the implanted device is close to the skin surface, either powering devices completely
through the skin (e. g., RFID implants [95]) or inductive charging may work through
the skin [102]. Alternatively, an exposed port could provide tethered recharging to an
implanted device.

Finally, an implanted device could harvest energy directly from using the device [11]
or from body functions (e. g., heartbeats [90] or body heat [148]). We direct the reader
to Starner’s overview for more information [148].
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8.2.6 Summary: Challenges of Implanted Interfaces

We have described some of the key challenges, and discussed possible components that
could support the interface between the human and the implantable. However, there is
little understanding of how well these basic interface components actually function
underneath human skin.

8.3 evaluating the user interfaces of interactive implanted devices

The purpose of this evaluation was to examine to what extent input, output, com-
munication, and charging components remain useful when implanted underneath
human skin. In addition, we provide a proof of concept that these devices can in fact
be implanted, both fully under the skin and with exposed parts.

We performed this evaluation in collaboration with the Department of Surgery in the
Division of Anatomy at the University of Toronto, Canada. The procedure of the study
underwent full ethics review prior to the evaluation and received approval from the
Research Ethics Board.

ŝŶĚƵĐƚŝǀĞ
charger�ůƵĞƚŽŽƚŚmicƐƉĞĂŬĞƌƉƌĞƐƐƵƌĞ

tap

ďƵƚƚŽŶ

ďƌŝŐŚƚŶĞƐƐ
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capacitance vibration

Figure 8.3: These devices were implanted during the study. Plastic bags around devices
prevent contact with tissue fluid.

8.3.1 Devices

We evaluated seven devices featuring twelve controls in total, which were traditional
input and output components as well as components for synchronization and powering
common in conventional mobile devices. As shown in Figure 8.3, we tested three basic
sensors for direct touch input: button, pressure sensor, tap sensor. In addition, we
tested two devices that could potentially detect hover above the skin: capacitive and
brightness sensor. We also tested a microphone for auditory input. For output, we
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tested an LED (visual), vibration motor (tactile), and speaker (audio). For charging, we
evaluated an inductive charging mat, and for communication, we tested Bluetooth data
transfer. These devices do not exhaust all possible implanted interface components,
but we chose them as some of the more likely components that could be used.

Cables connected each of the devices to a laptop computer to ensure reliable connectiv-
ity and communication with the devices throughout the study (Figure 8.4). The laptop
logged all signals sent from the input components on the devices, including device
ID, sensor ID, sensed intensity, and timestamp. The laptop also logged time-stamped
output triggers, including output component ID, intensity, and frequency.

All active devices used an ATmega328 microcontroller with a 10-bit precision AD
converter. The chip forwarded all measurements to the laptop and also computed the
length of impact as well as average and maximum intensities. We also recorded all
background intensities separately.

ƉŝƐƚŽŶ

ŝŵƉůĂŶƚĞĚ
device

ƐƉĞĐŝŵĞŶ

videocamera

Figure 8.4: Study setup including the study apparatus to evaluate input components.
A piston repeatedly dropped from controlled heights onto the sensors to produce a
controlled input signal.

8.3.2 Experimenters

The study was administered by an experimenter and an experimenter assistant, both
with backgrounds in human-computer interaction, and an anatomy professor, who
carried out all of the surgical procedures (Figure 8.4). Because the focus of this study
was on the technical capabilities of the devices themselves, external participants were
not necessary.
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8.3.3 Procedure

We conducted the evaluation in two sessions. In the baseline session, the devices
lay on the table shown in Figure 8.4. In the implant session, each of the seven
devices was implanted into a cadaveric specimen, one at a time. An external video
camera documented the entire implant session and parts of the baseline session. The
experimenter configured and initialized the devices through the laptop and monitored
the incoming data, while the assistant performed the necessary interactions with the
devices.

8.3.4 Medical Procedure

One lightly embalmed cadaveric upper limb specimen (dark-skinned male, 89 years
old) was used for this study. With light embalming, the tissues remained pliable and
soft, similar to fresh and unembalmed tissue [5]. The skin and subcutaneous tissues
remained mobile.

Figure 8.5: Illustration of skin layers. All
devices were implanted between the skin
and the subcutaneous fatty tissue.
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ƐƵďĐƵƚĂŶĞŽƵƐ�ƚŝƐƐƵĞ
ƐŬĞůĞƚĂů�ŵƵƐĐůĞ

Each of the seven devices was enclosed by two thin transparent plastic bags to prevent
malfunction due to penetration by tissue fluid (as shown by the left-most two devices
in Figure 8.3). To insert devices, the skin was incised and separated along the tissue
plane between the skin and underlying subcutaneous tissue at the cut end of the limb,
about 7.5 cm proximal to the elbow joint, which was 20 cm from the insertion point.
Once the plane was established, a long metal probe was used to open the plane as far
distally as the proximal forearm, creating a pocket for the devices. Each of the devices
was inserted, one at a time, into the tissue plane and the wires attached to the devices
were used to guide the device into the pocket between the skin and subcutaneous
tissue of the proximal forearm (Figure 8.5). Distal to the insertion site of the device,
the skin remained intact. All devices were fully encompassed by skin, with no space
between device and skin or tissue, or any opening.
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8.3.5 Study Procedure and Results

We now report the study procedure along with results separately for each of the seven
devices.

Touch Input Device (Pressure Sensor, Tap Sensor, Button)

To produce input at controlled intensities, we built a stress test device as shown in
Figure 8.4. The assistant dropped a piston from controlled heights onto each input
sensor to produce predictable input events.

For the pressure and tap sensors, the piston was dropped from six controlled heights
(2 cm to 10 cm in steps of 2 cm), repeated five times each, and the intensities from the
sensors were measured. For the button, the piston was dropped from seven heights
(3 mm, 7 mm, 1 cm, 2 cm–10 cm in 2 cm steps), also repeated five times each, and we
recorded if the button was activated. Subjectively, the piston dropping from 10 cm
roughly compared to the impact of a hard tap on a tabletop system. Dropping from
1 cm produces a noticeable but very light tap.

Apparatus Details

The pressure sensor used a voltage divider with a circular 0.2′′ Interlink Electronics force
sense resistor (100 g–10 kg) and a 10 kΩ resistor. The button was a 12 mm (4.3 mm high)
round PTS125 hardware button. The touch sensor was a Murata 20 mm piezoelectric
disc. The microcontroller captured events at 30 kHz. The piston was a 60 g metal rod.

Results

For all three touch-input sensors, we recorded the peak input intensities reported by
each component. We then averaged the observed peak values across all repetitions to
compensate for noise in our measurement process.

Force Sensor

Skin softened the peak pressure of the dropping piston, whereas the softening effect
shrunk with increasing impact force (Figure 8.6 left). We analyzed the measured
voltages and, by relating them back to the force-resistance mapping in the data sheet,
obtained an average of 3 N in differences of sensing impact between conditions.
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Figure 8.6: Left: On average, skin accounts for 3 N overhead for impact forces on
pressure and touch sensors. Right: The piston activated the button from all tested
heights in the baseline condition, but activated the button reliably only from a height
of 1 cm and up when implanted.

Button

Figure 8.6 (right) illustrates the effect of skin dampening on the impact of the dropping
piston. In the baseline condition, the piston always activated the button, whereas
only dropping from a height of 1 cm and higher achieved enough force to activate the
button through the skin at all times when implanted.

Tap sensor

In both conditions, the piezo tap sensor produced the maximum voltage our device
could measure in response to the impact of the piston from all tested heights. The piston
therefore activated the tap sensor reliably with all forces shown in Figure 8.6 (left).

8.3.6 Hover Input Device (Capacitive and Brightness Sensor)

To produce hover input, the assistant used his index finger and slowly approached the
sensor from above over the course of 3 s, rested his finger on it for 3 s, and then slowly
moved his finger away. The assistant repeated this procedure five times for each of the
two sensors.

Apparatus Details

The capacitive sensor was a 24-bit, 2-channel capacitance to digital converter (AD7746).
The brightness sensor used a voltage divider with a 12 mm cadmium sulfide 10 MΩ
photo resistor and a 10 kΩ resistor. Both sensors captured hover intensities at 250 Hz.
Three rows of fluorescent overhead lighting illuminated the study room.
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Results of the Brightness Sensor

We smoothed the raw measurements by averaging the five curves of measured sig-
nal intensities to account for noisy measurements. Without the finger present, skin
diffused incoming light, which resulted in reduced brightness (Figure 8.7 left). The
environmental light explains the differences in slopes between baseline and implant

condition; as the finger approaches the sensor, light reflected from surfaces can still fall
in at extreme angles in the baseline condition. Skin in contrast diffuses light and thus
objects approaching the sensor result in a less pronounced response.
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Figure 8.7: Impact of the skin on (left) sensed brightness and on (right) sensed capaci-
tance. Curves average the values of all five trials.

Results of the Capacitive Sensor

As with the brightness sensor, we averaged the five measured series to compensate for
noisy measurements. Similar to the brightness sensor, the capacitive levels were offset
when sensing through the skin (Figure 8.7 right). The signal of a touching finger was
comparably strong in the baseline condition, but caused only a milder difference in
sensed capacitance through the skin.

8.3.7 Output Devices (Red LED and Vibration Motor)

To evaluate the LED and motor, we used a descending staircase design to determine
minimum perceivable intensities [28, 89]. For each trial, the experimenter triggered
components to emit output at a controlled intensity level for a duration of five seconds.
The assistant, a 32 year old male, served as the participant for the staircase study
to determine absolute perception thresholds. The method started with full output
intensity, which the participant could clearly perceive. The experimenter then decreased
the intensity in discrete steps, and the participant reported if he could perceive it.
If he did not, the experimenter increased output intensities in smaller steps until
the participant could perceive it. We continued this procedure until direction had
reversed eight times [78, 89]. The last four reversal values then determined the absolute
perception threshold [78].
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At each step, we also measured the actual output intensities. We captured the LED
output with a camera focusing onto the LED at a fixed distance, aperture and exposure
time as shown in Figure 8.8 (left). An accelerometer placed directly above the vibration
motor captured output intensities (Figure 8.8 right).

Figure 8.8: Left: A camera captured the intensity of produced light and an accelerometer
measured vibration intensities (right).

Apparatus Details

The LED was a red 3000 mcd square light. The vibration motor was a 10 mm (3.4 mm
high) Precision Microdrives shaftless 310-101 vibration motor. The external camera was
a Canon DSLR EOS5D and captured 16-bit RAW images.

Results of the LED

The staircase methodology yielded the absolute threshold for perceiving LED output at
8.1% intensity required in the baseline condition and 48.9% intensity required through
the skin in the implanted condition. Figure 8.9 (left) shows the actually produced
intensities determined by the external camera.
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Figure 8.9: Left: Minimum perceivable LED intensity. Right: The accelerometer did
not pick up a signal through skin at motor intensities of 40% and lower. Dotted lines
indicate the participant’s absolute perception thresholds.
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Results of the Vibration Motor

The accelerometer captured a signal through the skin only when the motor was powered
at 40% intensity and higher; lower intensities were indistinguishable from background
noise (Figure 8.9 right). The baseline condition with the accelerometer resting on the
motor directly shows an expected linear decay. The shown values represent the mean
standard deviation of the three values read by the accelerometer. The difference in
personal perception of the vibration was small (24.2% vs. 33.3%).

8.3.8 Audio Devices (Speaker and Microphone)

To evaluate the speaker, we again used a descending staircase design to determine
minimum perceivable audio levels. We conducted the evaluation from two distances:
25 cm (close) and 60 cm (far). These distances simulated holding the arm to one’s ear
to listen to a signal (close) and hearing the signal from a resting state with the arms
beside one’s body (far). The stimulus was a 1 kHz sine wave signal [49]. During each
step, an external desktop microphone measured actual output signals from 5 cm away
in the close condition, and 60 cm away in the far condition.

To evaluate the implanted microphone, we produced audio as input from two distances
(25 cm, 60 cm). Two desktop speakers pointed at the microphone and played five
pre-recorded sounds at ten volume levels (100%, 80%, 60%, 40%, 20%, 10%, 8%, 4%,
2%, 1%). Four of the sound playbacks were voice (“one,” “two,” “three,” “user”), one
was a chime sound.

Apparatus Details

The implanted microphone was a regular electret condenser microphone. The external
microphone was an audio-technica AT2020 USB. The speaker was a Murata Piezo
25 mm piezoelectric buzzer. The laptop recorded from both microphones at 44.1 kHz
with the microphone gain set to 1.

Results of the Speaker

We first applied a bandpass filter of 100 Hz to the recorded signal around the stimuli
frequency to discard background noise. The assistant could perceive the stimuli sound
at a level of 5.2 dB at only 0.3% output intensity in the baseline session, and at 7%
in the implant session (Figure 8.10). The perceivable decibel levels compare to other
results [49]. Figure 8.10 illustrates the additional output intensity needed to achieve
comparable sound pressures.
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Figure 8.10: Left: Sound perception through skin is possible, but skin substantially takes
away from the output intensity. Right: This effect grows with the distance between
listener and speaker. Dotted lines indicate absolute perception thresholds.

Results of the Microphone

The skin accounted for a difference in recorded sound intensities of 6.5 dB (±3 dB)
for the close-speaker condition and 6.24 dB (±2.5 dB) in the far-speaker condition. At
full output volume, skin dampened the volume of the incoming sound by less than
2% when close by 25 cm away, but almost 10% with speakers 60 cm away as shown in
Figure 8.11.
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Figure 8.11: The differences in perceived sound intensities were nearly constant between
the implant and the baseline session.

8.3.9 Powering Device (Powermat Wireless Charger)

To evaluate the powering device, we docked the receiver to the powering mat as shown
in Figure 8.12 (left). In the baseline session, the two devices docked directly. In the
implant session, the receiver was implanted, and the powering mat was placed on the
surface of the skin directly above the implant.

Once docked, we separately measured the voltages and currents the receiver supplied
with a voltmeter and an ampere-meter. We took five probes for each measurement,
each time capturing values for five seconds for the meters to stabilize. We measured
the provided voltages and the drawn current with four resistors: 2 kΩ, 1 kΩ, 100 Ω,
56 Ω.
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Apparatus Details

The powering device was a PMR-PPC2 Universal Powercube Receiver with a PMM-1PA
Powermat 1X. The voltmeter and ampere-metre was a VC830L digital multimeter.
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Figure 8.12: Left: The wireless charging mat docks to the receiver, which is implanted
inside the specimen. Right: Skin affected the current provided through the wireless
connection only at higher current values.

Results of the Powering Device

The Powermat receiver output a nominal voltage of 5.12 V in the baseline condition.
Through skin, the provided voltage was unsubstantially smaller (5.11 V).

As shown in Figure 8.12 (right), skin did not impact the current drawn by the device for
low resistances. For the 56 Ω resistor, the difference was 7 mA, still providing 80 mA,
which should easily power an Arduino microcontroller.

8.3.10 Wireless Communication Device (Bluetooth Chip)

To test the performance of the wireless connection between two chips, one was external
and one implanted with no space between chip and encompassing skin in the implant

session. The baseline session tested both devices when placed outside. We evaluated
the connection at two speed levels (slow: 9600 bps, fast: 115,200 bps), sending arrays of
data in bursts between the devices (16 kB, 32 kB, 128 kB) and calculating checksums
for the sent packages. The receiving device output time-stamped logs of number
of received packages and its calculated checksum. The test was fully bidirectional,
repeated five times and then averaged.

Apparatus Details

The Bluetooth modules were Roving Networks RN-42 (3.3 V/26 µA sleep, 3 mA con-
nected, 30 mA transmitting) connected to an ATmega328 controller. The RN-42 featured
an on-board chip antenna with no external antenna.
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Results of the Wireless Communication Device

For the slow transmission speed, no packet loss occurred in either condition. The
effective speed rate was 874 B/s in both conditions (Figure 8.13 left).

0 2000 ϰϬϬϬ�ďƉƐ
ďĂƐĞůŝŶĞ
ŝŵƉůĂŶƚ
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Figure 8.13: Left: Bluetooth exchanges data reliably when running slow, but comes
with data loss when running fast. Right: Implanting affected fast transmission rates
negatively.

For the fast transmission speed, the devices received 74% of the sent packages on
average in the baseline condition and 71% when sent through skin in the implanted

condition (Figure 8.13 right). The effective speed differed by 200 B/s (4.4 kB baseline

vs. 4.2 kB implanted). We found no differences in direction.

8.3.11 Discussion

Overall, all traditional user interface components that were implanted worked under
the skin: sensing input through the skin, emitting output that could be perceived
through the skin, and charging and communicating wirelessly.

Regarding input, skin expectedly required user input to increase in intensity to activate
sensor controls. Despite this required intensity overhead, all tested input sensors did
perceive input through the skin, even at the lower levels of intensity we tested. This
leaves enough dynamic range for the sensors’ additional degrees of freedom, such as
detecting varying pressure. As for hover detection, skin incurs an offset of brightness
and diminishes capacitive signals, but both sensors responded to the approaching
finger.

While output appears diminished through the skin, detection is possible at low-enough
intensity levels, such that output components, too, can leverage a range of intensities
for producing output.

Powering the device through the skin yielded enough voltage to have powered any of
the implanted devices. It is also enough to power our 3in3out prototype device, which
we will describe in the next section. More measurements with lower resistances remain
necessary to determine the maximum throughput of the tested inductive power supply
beyond the 100 mA levels.



8.4 qualitative evaluation 157

While skin affected the throughput of the fast wireless communication and accounted
for a 3 pp higher loss of packages and a 0.2 kB/s drop in speed, it did not affect the
slow condition. The flawless wireless communication in 9600 bps enables reliable
data exchange. Results found in the related area of body-area networks differ, as
transmission goes through the body or arm, not just skin [64].

8.3.12 Exploring Exposed Components

In addition to quantitatively evaluating input components, we wanted to prototype an
exposed implanted interface component. To do so, we mounted a Blackberry trackball
control on the back of an Arduino Pro Mini 8 MHz board and soldered batteries to it.
The trackball was a fully autonomous standalone device. We programmed the trackball
to emit a different light color when the user swiped the ball horizontally or vertically.

To expose the roller ball after it was implanted into the specimen arm, the skin and
plastic cover over the roller ball were carefully incised using a scalpel. The incision was
about 3 mm in length, so only the roller ball was exposed. Once implanted into the
specimen, the experimenters took turns interacting with the device, which worked as
expected. Figure 8.1f illustrates the exposed trackball. Note that this exploration took
place after the quantitative evaluation had fully finished. The incision made for this
exploration had no effect on our earlier evaluation.

8.4 qualitative evaluation

To explore initial user feedback on implanted user interfaces, we built and deployed
a prototype device covered with a layer of artificial skin on users. Our goal was to
gain initial insights on how users may feel about walking around with an interactive
implanted device and to demonstrate how such devices can be prototyped and tested
outside controlled lab conditions.

Study Device

We built the 3in3out device specifically for the qualitative evaluation as shown in
Figure 8.2. It features three input controls (button, tap sensor, pressure sensor) and
three output components (LED, vibration motor, piezo buzzer). A Li-Po battery powers
the standalone 3in3out device.

The device implemented a game as an abstract task that involved receiving output
and responding with input. At 30–90 second intervals, a randomly chosen output
component triggered the user, who had to respond using the correct input: pressure
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sensor for the LED, tap sensor for the motor, and button for the speaker. While the
LED kept blinking, the speaker and vibration motor repeated their output trigger every
10 s. Without a response, the trigger timed out after one minute. Participants received
points based on the speed and accuracy of their responses.

8.4.1 Simulating Implants: Artificial Skin

We created artificial skin to cover our prototype and simulate actual implantation with
the aid of a professional prosthetics shop, which had years of experience modeling
body parts. The artificial skin was diffuse and diffused light, dampened sound and
vibration in roughly the same manner to the real skin in our evaluation. Participants
in the study confirmed that the artificial skin qualitatively felt like real skin. As the
focus of this study was on obtaining qualitative feedback, we did not calibrate the
characteristics of the artificial skin to match the absolute quantitative properties of
skin we measured in our evaluation. We did not need the artificial skin to match
the Bluetooth properties of skin either, because our qualitative study did not include
communication devices.

Figure 8.14: Artificial skin, created from silicone, covered the 3in3out device to simulate
implantation and allow for testing.

To create the artificial skin, we mixed Polytek Platsil-Gel 10 with Polytek Smith’s
Theatrical Prosthetic Deadener, which is known to produce silicone with skin-like feel
and consistency. We added skin-color liquid foundation and enhanced the skin look
with red, blue and beige flocking. We then poured the silicone mixture into a mold
customized to fit a human arm, added the device wrapped in Seran foil, and positioned
a clay arm, so that the silicone assumed the correct shape. We then affixed the artificial
skin to users’ arms using ADM Tronics Pros-Aide medical grade adhesive. The final
layer of artificial skin measured 4.5′′×2

′′ (Figure 8.14) and was 1–2 mm thick above the
device (i. e., similar to anterior surface skin [46], which we studied).
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8.4.2 Task and Procedure

We designed a set of six primary tasks to distract from wearing the prototype device,
which interrupted participants while carrying out those tasks: 1) ask a person for the
time, 2) board public transport and exit after two stops, 3) ask a person for directions
to the post office, 4) pick-up a free newspaper, 5) buy a coffee, and, finally, 6) sit in a
park, finish the coffee and read the newspaper. Participants’ secondary task was to
respond to the triggers that the 3in3out device emitted, and try to achieve a high score.
The device recorded response times, errors and point totals. The study took place in
downtown Toronto, Canada on a summer day, which represented a realistic worst-case
scenario; both, direct sunlight and noise levels were very intense.

Participants first received a demonstration of the device and practiced its use. Partici-
pants then left the building to perform all primary tasks, and returned after approxi-
mately 60 minutes. Participants filled out a questionnaire after the study, sharing their
impression when using the device in public environments and any the reactions they
received.

8.4.3 Participants

We recruited 4 participants (1 female) from our institution. Participants were between
28 and 36 years old and wore the prototype device on their left arm. We reimbursed
participants for using public transport and buying coffee.

8.4.4 Results

Overall, participants found the device easy to use. All liked the tap sensor (“easy to
use”) and button (“easy to find,” “haptic feedback”), but none enjoyed the pressure
sensor. For output components, all ranked the LED lowest for perception relative
to the other output components, the speaker medium, and the vibration motor best
(“really easy to notice”). While these results suggest that the device might work better
in environments quieter and/or darker than the noisy city setting in direct sunlight,
participants were able to see the LED blinking when looking at it.

While participants mentioned receiving curious looks from others when interacting
with their arm, no external person approached a participant, even though they spent
time in casual settings (e. g., coffee place and public transport).

Most importantly, the results of our study demonstrate that implanted user interfaces
can be used to support interactive tasks. This evaluation also provides a methodology
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to pave the way for future evaluations and mockups of more elaborate devices and
applications of implanted user interfaces.

8.5 medical considerations of interactive implanted devices

While the primary goal of our work is to consider implanted user interfaces from an
HCI perspective, it is also important to discuss some of the medical considerations.
Below we discuss some of the issues surrounding the feasibility of implanted user
interfaces.

8.5.1 Location

In our study, the devices were implanted under the skin on the front of the forearm,
just distal to the elbow joint. This location was chosen as the devices could be easily
activated by an individual with their other hand and would not be in an area where
damage by impact is likely. For the most part, these devices could be implanted deep
into the skin in the subcutaneous tissue anywhere in the body where the devices are
accessible and can transmit signals. This includes the upper and lower limbs, the chest
wall, abdomen, etc. Areas covered by thick skin, such as the palms and soles of the feet,
would not be suitable for implantables, as the skin is too thick and tough to interact.
The thickness of human skin ranges between 0.5 mm on the eyelids to 4+ mm on the
palms and soles of the feet [46].

The superficial placement of the devices, directly under the skin, facilitates device
activation and signal transmission. The devices can be inserted between the skin and
subcutaneous tissue, providing a minimally invasive approach. The deep underlying
tissues, e. g., muscles, would not be disrupted. Similarly, pacemakers are placed under
the skin in the chest or abdominal regions and the wires that are extending from the
heart are connected to the pacemaker. Only a small skin incision that is later closed
with sutures is needed to insert the pacemaker. The device remains stationary in its
implanted location due to the fibrous nature of subcutaneous tissue.

The tracking ball was the only device we implanted that required surface exposure.
The device worked very well under the experimental conditions, but much work needs
to be done to assess the medical implications of a long-term insertion of an exposed
device.



8.5 medical considerations of interactive implanted devices 161

8.5.2 Device parameters

Tissue fluid will penetrate a device that is not encased in a protective hull, and affect
its function. The hull’s material must be carefully chosen to be pharmacologically
inert and nontoxic to body tissues. For examples, pacemakers are typically made from
titanium or titanium alloys, and the leads from polyether polyurethanes. In vivo testing
would need to be carried out to determine what materials are most suitable.

The device should be as small as possible, so it is easily implantable and cosmetically
acceptable to the recipient. Functionality and minimal disruption of the contour of the
skin are important considerations.

8.5.3 Risks

The main medical risk of implanting devices is infection. Infection can be caused by
the procedure of implanting the devices. There are also possible risks to muscles if
the device is implanted any deeper than the subcutaneous tissue. The material used
for the casing could also possibly cause infections, so it will be important that the
material being used passes through proper testing. It is very difficult to hypothesize
about other types of risks without performing testing. The wear of skin depends on
the pressure applied to it; while paraplegics get sore skin from body weight resting
on single spots through bones, skin is unlikely to wear from manual pressure. The
proposed input with implanted devices is short and low in force and intensity, making
skin unlikely to wear. One risk that is relatively low is that of the skin actually tearing.
Skin is very strong and it is unlikely the small devices would cause any damage.
However, determining the long-term effects of interactions with implanted devices on
skin requires further studies.

8.5.4 Implications and Future Studies

All of the input and output devices were functional under the experimental conditions
of this study. Further cadaveric study is needed to determine if gender, skin color,
and site of implantation affect device function. In the next phase, testing would also
be carried out on unembalmed tissue, although the skin of lightly embalmed and
unembalmed specimens is similar, loose and pliable in both cases. Finally, the medical
implications of long-term insertion of devices of this nature require detailed study.
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8.6 discussion and limitations

The results of our study show that traditional interfaces for input, output, wireless
communication, and charging still function when embedded in the subcutaneous tissue
of the forearm. Having obtained an evaluation of common components establishes the
foundation for future investigations into more complex devices to explore the many
other aspects of implanted user interfaces.

For example, we disregarded security concerns in our exploration. Wireless implanted
devices need to prevent malicious activities and interactions from users other than the
host user, such as stealing or altering stored information and manipulating the devices’
operating system [33, 57].

The processing capabilities of the devices that were implanted during the technical
evaluation, as well the 3in3out device, require only simple processing on the microchip.
More work is necessary to investigate if and how implanted devices can perform
more computationally intensive operations (e. g., classification tasks using machine
learning [136]) and how this affects the power-supply needs.

Social perception of implanted interfaces, both by host users as well as the public,
requires more studying. Although this has been studied with implanted medical
devices [32], social perception of invisible and implanted user interfaces and devices
remain to be examined.

We conducted our qualitative evaluation with participants in the summer, which is
why all participants wore short-sleeve shirts. In the winter, cloth will additionally cover
implanted input and output components [124] and interfere with interaction, which
raises new challenges.

Study Limitations

Our technical evaluation comprised a single specimen. In addition, we carried out the
staircase evaluations with a single participant. As such, the metrics we have collected
can serve as baselines for future experimentations, but should be generalized with
caution. Furthermore, our evaluation captured technical metrics from the devices,
and not human factor results. In the future, it may be interesting to have external
participants interact with the implanted devices and study task performance levels.

8.7 outlook

The technological transition society has made in the past 30 years is astounding.
Technology, and the way we use it, continues to evolve and no one can tell what the
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future holds. Even though today, the primary motivation for implanted devices will
almost always stem from the medical domain [37], the future of interactive implanted
devices is likely connected to the future of (ultra-)mobile devices. Implanted devices
already fulfill all the properties mobile devices are striving towards, such as providing
always-available interaction and restoring or augmenting users with new functionality.

Our work takes a first step towards understanding how interacting with ultra-small
devices might be accomplished, and begins to ask and answer some of the important
technical, human factors, and medical questions. Our results have the potential
to provide medical implants with new capabilities, and more broadly change the
relationship between humans and interactive miniature devices.

Future interactive devices—ultra-wearable devices, i. e., devices worn at all times, as
well as implanted devices—will raise a range of questions. On the highest level, we
will have to examine which “natural” interaction modalities will prove practical to
use devices’ functionality in the context of certain social settings. Further pushing the
minimum size of future devices will spark additional questions: What form factors
will be viable? How are the form factors going to evolve in the next ten years? Where
on or in the body will users wear such devices?

Considering the specific future of implanted devices, we will have to examine their
purpose on a general level: What applications are worth being promoted to the level of
an implanted device? Will implanted devices be special-purpose, similar to implanted
medical devices? Will they merely reside in the body or interconnect with the user’s
senses? Will we use implanted interfaces to augment human abilities, such as by
adding “senses” of direction or time?

To answer these questions, many technical challenges need to be tackled, such as
research on materials for such devices and security aspects of communicating with
them. Of course, questions about human values are paramount, such as ethical concerns
and the medical risks that currently accompany the use of implanted devices.

In conclusion, we envision a future in which technology itself fades into the background
and augments users directly. We thereby expect technology to further blend into our
lives in the form of ultra-wearable or even future implanted devices.
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