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ABSTRACT
We present GazeConduits, a calibration-free ad-hoc mobile in-
teraction concept that enables users to collaboratively interact
with tablets, other users, and content in a cross-device setting
using gaze and touch input. GazeConduits leverages recently
introduced smartphone capabilities to detect facial features
and estimate users’ gaze directions. To join a collaborative
setting, users place one or more tablets onto a shared table
and position their phone in the center, which then tracks users
present as well as their gaze direction to determine the tablets
they look at. We present a series of techniques using Gaze-
Conduits for collaborative interaction across mobile devices
for content selection and manipulation. Our evaluation with
20 simultaneous tablets on a table shows that GazeConduits
can reliably identify which tablet or collaborator a user is
looking at.

Author Keywords
Cross-device interaction, gaze input, touch input

CCS Concepts
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INTRODUCTION
Cross-device interaction between multiple co-located mobile
devices has become an emerging field of research in human-
computer interaction [5, 23, 33, 34]. These setups of co-
located mobile devices can be used to create ad-hoc device
communities [13] almost anywhere to allow users to share
or collaborate on content across devices. Especially using
the spatial relationship between co-located devices has been
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’20, April 25–30, 2020, Honolulu, HI, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-6708-0/20/04. . . $15.00
DOI: https://doi.org/10.1145/3313831.3376578

Figure 1. GazeConduits is a mobile and ad-hoc gaze tracking system

that allows one or more users to interact across the devices placed in

front of them. GazeConduits leverages the eye tracking capabilities of

recent commodity devices, allowing them to participate in cross-device

interaction scenarios.

shown to be beneficial for applications such as brainstorming
[34], collaborative photo sharing [14], and productivity tasks
[20]. For seamlessly interacting across devices, researchers
have explored a variety of input techniques, such as touch [29]
and gestures [6, 30].

One input modality receiving increased attention lately is gaze
as a communication channel for recognizing the user’s interac-
tion with a device [25]. Research on gaze-based interaction
design for mobile cross-device interaction using off-the shelf
mobile devices has only just started [4], as the majority of
work so far has used dedicated eye trackers for usability test-
ing in controlled lab setups, leaving their use in real-world
scenarios largely open for exploration [15]. With the introduc-
tion of eye tracking on smartphones like Apple’s iPhone X
and Samsung’s Galaxy S8, researchers expect a new surge of
applications and use-cases [15]. We believe that gaze sensing
is particularly relevant for mobile cross-device interaction, as
studies have shown its benefits for interacting with multiple
devices [40, 44].

In this paper, we integrate mobile gaze sensing into cross-
device interaction to explore the design space of collabora-
tive interaction on everyday mobile devices. Our approach is
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guided by the following research question: How can we imple-
ment a calibration-free collaborative interaction technique that
supports cross-device interaction? We present our gaze track-
ing system GazeConduits, which leverages the gaze tracking
capabilities built into recent smartphones to detect and track
users around a set of devices as well as predict their gaze di-
rection towards specific devices for selection and interaction.
GazeConduits requires no calibration, which makes it simple
to setup in ad-hoc group scenarios. We briefly demonstrate
two scenarios that build on GazeConduits in conjunction with
touch input to enable dynamic groups of users to collabora-
tively select and manipulate content across their devices.

We evaluated GazeConduits and found that it can detect which
tablet or collaborator a user looks at with 95.58% accuracy.

RELATED WORK
Our techniques are positioned in the context of three areas
of related work: the design of cross-device systems and their
requirements for tracking; interaction techniques leveraging
a person’s gaze as input; and the more recent approaches
towards mobile gaze tracking.

Cross-Device Systems and Tracking
Cross-device systems [1] afford new interactions for sense
making [18, 48], curation [2], sharing media [19], and collabo-
rative content editing [16]. Usually, these setups distribute an
interface across a number of devices like tablets, smartphones,
interactive walls or tabletops, and provide techniques to effec-
tively use the input/output modalities of these multi-device
setups. The research has led to the exploration of supporting
both individual tasks [7, 20] and collaborative activities [9, 11,
38, 46].

A major research area of cross-device work is investigating
effective techniques for a person to interact with this ecology
of devices [1]. Inspired by early seminal work such as Reki-
moto’s Pick-and-Drop [29], different techniques have been
designed and evaluated for linking devices and transferring
digital content between them [5, 6, 8, 24, 35]. Several cross-
device systems [10, 21, 33, 49] used overhead-positioned
depth-sensing cameras – tracking both people and devices –
to enable 3D spatial gestures a person can perform to transfer
information across the multi-device ecology. Later, related
approaches leveraged screen polarization [32] or tracking a
person’s face with front-facing RGB cameras [4] to detect
device location. Because most of these approaches require
complex technical setups, finding new ways towards ad-hoc
and flexible cross-device collaboration remains an ongoing
research challenge.

Gaze Interactions
Gaze is our primary sensory channel, as the first interaction
with an object is to look at it [50, 51]. In the 1980s, researchers
began to explore how gaze can be utilized as an input method
[12, 45]. Several obstacles complicate the use of gaze input,
such as its inaccuracy, the double role of eye gaze, and the
Midas Touch problem, rendering it ineffective to directly ma-
nipulate digital content or control cursors [37]. Instead, gaze
has proven to be more useful in applications as a method for

selection of, or focusing on, content, in combination with other
input modalities [43], such as touch [28, 36] or the mouse [51].
Multiple studies showed that gaze can be utilized to seamlessly
switch between direct and indirect touch input [25, 26, 28, 44].
This is achieved by using direct touch while users are looking
at their hands, and warping the touch point to the gaze location
when they look at a different part of the display or even at a
different display.

An advantage of gaze over touch input is that it does not share
the problem of reachability [31], as any objects that are in
visible range can be interacted with. Studies have shown that
a combination of gaze and touch can be used to extend the
touch input on a large surface [41], to transfer objects between
multiple devices [40], or to modify objects on a distant screen
[39]. Gaze input can also be a particularly useful addition
to collaborative settings. Studies by Zhang et al. [52], van
Rheden et al. [42], and Pfeuffer et al. [27] used gaze tracking
to show that all collaborators recognize at which location a
user is looking, thus increasing the awareness of collaborators.
All these interaction concepts can be applied in an ad-hoc
mobile cross-device setting; however, so far they have required
either extensive calibration, used specific hardware, or needed
a controlled lab environment to track gaze.

Mobile Gaze Tracking
One of the first systems that allowed gaze-based interaction on
unmodified mobile devices was the EyePhone [22]. It allowed
the user to move the phone relative to the user’s face such
that the user’s left eye was in one of 9 possible positions in
a 9 element grid, and then used eye blinking to trigger input.
Wood and Bulling [47] used the built-in camera of a tablet
and employed a model-based approach to detect eye positions
while users were looking at the tablet, while Krafka et al. [17]
estimated gaze with an end-to-end appearance-based approach
using deep learning.

Goswami et al. [3] showed that using depth camera data to
geometrically model a user’s face and eyes improved gaze
tracking accuracy. Recent smartphones use a similar approach
to extract the user’s facial and eye features, which has brought
gaze tracking capabilities to off-the-shelf consumer devices
[15]. These devices could hold the key to bring gaze interac-
tions to ad-hoc cross-device settings.

GAZE TRACKING IN AN AD-HOC SETTING
In ad-hoc cross-device setups, multiple users can create de-
vice communities on-the-fly by arranging multiple mobile
devices on a surface. With GazeConduits, we follow this ad-
hoc approach and design it for easy setup and minimal to no
calibration. Our choice of using the smartphone to track gaze
instead of a separate eye tracker allows for the system to be set
up at any time without specific hardware requirements beyond
the ubiquitous smartphone that people carry in their pocket.

GazeConduits builds on iOS running on Apple’s iPhone X or
later, which tracks the user’s face by extracting facial features
from a depth map that is calculated using a projected infrared
dot pattern. These facial features include the position of the
user’s nose, mouth, and eyes as well as the position of the
pupils, from which iOS estimates gaze directions.
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During our investigations, we noticed that Apple’s gaze pre-
diction assumes that the user is holding the device in her hands
and looking directly at it; it was not designed for placing the
phone on a table and using it to track gaze across surrounding
devices. To determine if the built-in capabilities are sufficient
for gaze tracking across users and devices around a single
iPhone X, we evaluated to what extent the phone may serve
as a central hub for gaze interaction, specifically the size of
the tracked area in front of the phone in which the user’s face
and gaze are detected, and supported tilt angles for placing the
device on the table while maintaining solid tracking.

Determining the Gaze Tracking Area
Since tracking range and accuracy depend on the view frustum
and resolution, we conducted a study with five participants to
determine the parameters of reliable tracking.

To determine the maximum distance between the user’s face
and the phone, we placed the phone on a camera stand and
asked users to slowly move their heads away from the phone.
At the farthest point at which the phone still detected the user’s
head, we measured the distance from the participant’s nose to
the phone using a laser distance meter. The results showed that
the phone could track the user’s head at a distance between
10 and 88 cm (SD = 3.2 cm). We used the same approach to
measure the phone’s frustum angle and how far users could
turn their head away from the smartphone while still being
tracked by the phone. Our results showed that the maximum
supported angle for face tracking is 30° (SD = 2.1°) in both
the horizontal and vertical direction. We found that users
could turn their head by about 35° (SD = 3.5°) horizontally
and about 30° (SD = 2.3°) vertically (Fig.2).

Determining Optimum Angle and Distance
To support setting down the phone as a tracker onto a table,
we determined suitable tilting angles. To provide users with
some space to move around in without unintentionally leaving
the tracking area, we limited the distance between the phone
and the user’s head while sitting directly in front of it to 70
cm. Assuming a user’s typical sitting height of 30–40 cm
above the table and close to the table edge, the phone should
be placed 60 cm away from that table edge, following basic
trigonometry. At this position, we varied the tilting angle of
the phone, and found that an angle between 25 and 35 degrees
allowed users to move their heads without the phone losing
tracking.

Tracking Gaze on a Table
To track the user’s gaze across multiple devices on the same ta-
ble, we register the phone with the table using a stand that fixes
the phone at a specific angle. We then use the phone’s IMU
to map 3D positions obtained from face tracking to positions
that correspond to the plane of the table surface. From Apple’s
API, we obtain the user’s head location h and its direction
~d in the local coordinate system with the phone at its origin.
The user’s eyes are represented by e1 and e2 in the coordinate
system of the user’s head and one directional normal vector for
each eye (~e1,~e2). By combining these positions and vectors,
we calculate a vector normal ~g and its origin that represents
the user’s gaze in the coordinate system of the phone.

Gaze tracking area
Target

Figure 2. To analyze tracking accuracy, participants were asked to fixate

each target for five seconds. The ellipses represent the measured gaze

positions on the table in comparison to a tablet.

We can now estimate which location on the table users are
looking at, by creating a virtual 3D space that contains the
user’s head location h and the normal gaze vector~g as well as
the table’s surface, and then calculating the point on the table
surface where those vectors intersect.

Measuring Gaze Tracking Accuracy
To determine the accuracy of the phone’s gaze prediction
towards targets on the table, we conducted a study with 10 par-
ticipants (23–42 years, M = 32.73, SD = 2.31, four female).

Apparatus and Task
One iPhone X in a stand was placed on the table with a dis-
tance of 60 cm to the table edge. We defined the bottom of
the phone as the origin of the coordinate system (0,0), and
highlighted nine target locations around the phone on the ta-
ble at (0,0), (�40,0), (40,0), (0,�40), (0,40), (�20,�20),
(20,20), (�20,20), and (20,�20) cm (Fig. 2).

Participants were asked to look at each of the targets for five
seconds. During this time, they were asked to move their
head around while keeping their eyes on the target position.
Throughout each trial, the phone recorded the intersection
points between the gaze vector and the plane, and the head
vector and the plane, 30 times per second. This allowed us to
analyze the difference between head and gaze tracking.

Results
To evaluate the accuracy of the smartphone’s gaze estimation,
we measured the distance between the estimated gaze location
on the table and the marked location at which participants
were looking. Our results show that the average distance over
all participants and all targets was 2.5 cm on the x-axis and
9 cm on the y-axis. However, the spread of the data had a
large standard deviation of 8.1 cm on the x-axis and 11.5 cm
on the y-axis. Using this approach allows the smartphone to
detect if a user is looking at a specific table area with the size
of 20⇥ 25 cm, which is roughly the size of a tablet. Below,
we will show that this simple tracking approach is accurate
enough to detect at which particular tablet a user is looking.

GAZECONDUITS
Based on the parameters elicited from our preliminary investi-
gations, we developed GazeConduits to explore the applica-
tions of gaze tracking in an ad-hoc collaborative environment.
The goal of GazeConduits is to show that we can achieve a
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Figure 3. When the user places a new tablet on the table, GazeConduits

connects to existing devices and asks the user to selects its grid position.

calibration-free collaborative environment that supports a com-
bination of gaze and touch interactions on commodity devices
and minimal setup requirements.

To set up the GazeConduits system, the first user places an
iPhone on a table and starts our GazeConduits app to act as
the central hub for gaze input. To enforce correct smartphone
placements on the table at a working tilt angle, we built a
simple case with a stand, as shown in Figure 4. Using the
measurements of this stand and the IMU of the smartphone
we can calculate the exact position on a plain surface that
represents the table in the coordinate system of the smartphone.
The flexibility of the stand allows users to expand and collapse
the setup during operation. Such a case could also be built in a
thinner form factor, e.g., by using a 3D printer or laser cutter.

After placing her smartphone on the table, the user can add
up to 20 tablets around the smartphone following a rough grid
layout (Fig. 1). To be part of the shared device environment,
the GazeConduits app is launched on each tablet, which auto-
matically connects it to the smartphone, in our case via Wi-Fi.
Each new tablet then displays a message asking the user to
select its rough position on the grid (Fig. 3).

The layout and size of our grid, and the limitation to 20 tablets,
are based on a number of design decisions. Each grid element
has a size of 25⇥25 cm; based on our accuracy tests, this size
ensures that the gaze tracking mechanism can always reliably
detect whether a user is looking at a target within that grid
element. It is also slightly larger than common tablets like
the iPad (23.8⇥16.7 cm), Microsoft Surface GO (24.5⇥17.5
cm), or Samsung Galaxy Tab (24.9⇥16.4 cm), making sure
that common tablets fit into a grid element without overlap
issues, regardless of their orientation. Two rows of tablets are
placed in front of each user; with more rows the distance from
user to phone would exceed the maximum 88 cm derived in
previous tests, especially if the user is leaning back or rocking
back and forth in their chair.

Assuming a setup of up to four collaborators around the table,
we can support a maximum of a 5⇥5 grid, with the central
grid element being reserved for the smartphones. Furthermore,
the corners of the grid do not allow for reliable gaze tracking,
as users looking at tablets in the corners of the table have to
rotate their heads more than 30 degrees. Thus, we limited
the number of grid elements in the first row in front of each
user to three elements, resulting in the grid used in Figure
1. GazeConduits works on other layouts, too, e.g., in setups
with only one or two users or in scenarios where not all tablets

Figure 4. The smartphone case (left side) has an included stand can

be expand and collapsed. It ensures that the smartphone can easily be

placed on the table in the correct tilting angle. The connector widget

(right side) allows the users to easily arrange up to four smartphones in

a fixed position.

should be selectable via gaze. As soon as one or more tablets
are placed on the table and the user selects at which position
these tablets are placed, GazeConduits can directly detect and
track which tablet or other collaborator the user is looking at.

While GazeConduits displays a static, predefined grid on its
tablet UI during this positioning phase, the system does not
require tablets to be placed in perfect alignment with the grid
elements. It does display a grid to suggest good placement
positions, but after tablets have been placed and the users
tapped on the closest grid element for each, the system then
splits up the entire shared space between the existing tablets,
mapping every area to the closest existing device, in a sim-
plified Voronoi grid approach. This makes our system robust
against sparsely filled tablet grids and misaligned devices. The
grid becomes more important if two tablets are placed directly
adjacent to each other. In this case, aligning them to the grid
helps disambiguate which tablet is being looked at.

In addition, GazeConduits can also detect if one or more users
are present, their locations around the table, and (via face
identification) who is located where. We implemented this
detection by comparing the geometry (nose, chin, and mouth)
of the detected faces, achieving a simple user identification to
simulate the use of a more advanced face recognition system
in collaborative scenarios.

To support up to four users at once, each user places a smart-
phone in front of them as described above. To ensure that four
smartphones can easily be fixed in a position to each other,
we created a small connector widget that uses a magnetic
locking mechanism to hold the cases in one of four possible
positions. To identify in which position the new smartphone
is placed, GazeConduits compares the compass readings of
all smartphones. By comparing the compasses of each tablet
and smartphone, GazeConduits is also capable of roughly
determining the orientation of each tablet. This enables Gaze-
Conduits to, e.g., change the display orientation of a tablet
dynamically based on which user is looking at it.

STUDY 1: EVALUATING GAZE-TO-TABLET TRACKING
To understand how well the gaze tracking of the phone and our
correction method can identify which tablet a user is looking
at, we created a game for a user study with 10 participants
(23–35 years, M = 28.73, SD = 3.31, two female). In this
study, users had to perform a gaze-and-drop interaction similar

4



to the content transfer techniques introduced by Turner et al.
[40].

Apparatus and Task
We set up GazeConduits with one iPhone X that tracked the
participant’s gaze and 20 shared tablets placed on the grid
around it as shown in Fig. 1. Participants were asked to sit
in front of the smartphone such that it could track their face.
At any time, the system provided feedback by displaying a
crosshair on the shared tablet they were looking at. In addition,
they held one private tablet that they were instructed to use
for touch input. The goal of the game was to feed octopuses
on the shared tablets with a shrimp that was being displayed
on the private tablet. This task mimics a typical cross-device
object movement operation, in which a user wants to transfer
an object from one tablet to another.

At the beginning of each trial, all shared tablets only showed a
blue water background, and the private tablet displayed a 3⇥3
cm large shrimp at a random location. As soon as participants
touched and held the shrimp, an octopus appeared on one of
the shared tablets. Participants then had to find the tablet with
the octopus on it and, while looking at that tablet, release the
touch from the shrimp on their private tablet. As soon as they
released their touch, octopus and shrimp disappeared, and a
new trial was started. With this study design, we ensured
that participants looked at their private screen at the start of
each trial. Each octopus appeared four times on each of the
20 tablets in random order, such that each participant had to
conduct 80 trials, for a total of 800 recorded gaze selections
across 10 participants.

Variables
Since we were mostly interested in how reliable the system
could detect which tablet the participants were looking at and
if this differed between tablet positions, we used the TABLET
POSITION as independent variable. As dependent variables,
we measured SUCCESS [0,1] if the system was able to iden-
tify that the user looked at the correct target, and the task
completion TIME [s] for each trial.

Results
The overall success rate was 95.58%, with an average task
completion time of 2.13 s (SD: 1.325 s). To analyze the re-
lation between TABLET POSITION and SUCCESS events, we
calculated the SUCCESS RATE in percent for each TABLET PO-
SITION and each user, and used a repeated-measures ANOVA
to analyze the data. TABLET POSITION had no significant main
effect on the SUCCESS RATE (F8,1336 = 779, p = 0.0758).

For task completion TIME, we used a repeated-measures
ANOVA on the log-transformed data. TABLET POSITION had
a significant main effect on TIME (F19,779 = 8.13, p < .001).
Tukey HSD post-hoc pairwise comparisons showed that the
tablet positions are divided into four groups that are signifi-
cantly different from each other in terms of task completion
time. Figure 5 shows these groups.

Discussion
Our study results highlight that GazeConduits is capable of
reliably identifying which tablet a user is looking at. The
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Figure 5. Task completion times in the Gaze-to-tablet study. Each color

represents a significance level. Participants were able to select the green

tablets fastest, followed by yellow, orange, and red.

results for SUCCESS RATE show that the system was able to
identify each tablet position in the same way. However, since
the system displayed a cursor that indicated the tablet at which
participants were looking, participants were able to correct
the selection by moving their eyes and head until the system
selected the correct tablet. Task completion times suggest that
for most tablet positions (group 1 and 2), GazeConduits was
able to directly identify the tablet the user was looking at. This
is also in line with our observation that for most of these tablet
positions, it was sufficient for participants to just naturally
look at them.

However, for the tablet positions in group 3 and 4, the system
was not always able to identify which tablet users were looking
at, and the cursor jumped between multiple tablets. Most users
tried to stabilize the cursor by actively moving their heads
and eyes towards the tablet position, resulting in longer task
completion times. Especially for tablet positions in group 4,
we could not find a final explanation why it took participants
more time to select them. We hypothesize that, because all
of them were surrounded by several other tablets, and due
to inaccuracy, the system was not always sure which tablet
participants were looking at, thus jumping frequently between
different tablets. However, this is also true for other tablets
positions like 9 and 10 that were selected significantly faster.

STUDY 2: EVALUATING GAZE-TO-PERSON TRACKING
To evaluate how GazeConduits tracks the gaze of four users
at the same time, and how reliably it can detect if a user is
looking at another user, we conducted a second study (n=12,
age 22–33, M=26.17, SD=3.02, two female).

Apparatus and Task
Setup and task were similar to the first study, except now with
four participants around the table instead of one, all playing
the game simultaneously (Fig. 1). In this setup, the game
acted merely as a distractor to keep participants busy and
engaged. The actual task we focused on in our analysis was
that participants had to look at other participants from time to
time. This was triggered by a notification on the participant’s
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private tablet, displaying the ID of the other participant. The
participant then had to look at the person indicated and confirm
this selection with a touch on their private tablet. During the
study, each participant had to look at every other person eight
times, for a total of 24 selections per participant.

Variables
As independent variable, we used the COLLABORATOR LOCA-
TION (left, front, right) that described at which other person a
participant had to look. As dependent variables, we used the
same as in the first study: SUCCESS [0,1] and task completion
TIME [s] for each trial. We measured the time from when the
notification appeared on the private tablet until participants
confirmed their selection.

Results
The overall success rate was 95.14%, with an average task
completion time of 2.26 s (SD = 0.882 s) across all trials and
participants. As in the first study, we calculated the SUCCESS
RATE as a percentage for each COLLABORATOR LOCATION
and each user, and used a repeated-measures ANOVA to ana-
lyze this data. COLLABORATOR LOCATION had no significant
main effect on SUCCESS RATE (F2,284 = 1.2, p = 0.0858). For
TIME, we used ANOVA on the log-transformed data, which
did not show a significant difference between the COLLABO-
RATOR LOCATION conditions (F2,284 = 0.55, p = 0.574).

Discussion
The results of this study showed that GazeConduits can reli-
ably detect when a user is looking at a particular other user.
It also shows that the shared virtual 3D space between the
four smartphones is stable enough to support such interactions
across users. However, task completion time was relatively
large. This was likely due to the game being too much of
a distractor, as we often observed participants searching for
the next octopus instead of noticing the notification on their
private tablet.

DISCUSSION AND SCENARIOS
GazeConduits takes a step towards gaze as a real-wold input
modality, by removing the requirement for calibration alto-
gether, while expanding its functionality to include multiple
users and devices simultaneously, all with off-the-shelf devices.
We believe that the increased availability of gaze tracking has
the potential to enable a variety of new cross-device, collab-
orative interaction scenarios. To illustrate this potential, we
present two scenarios that GazeConduits enables, and that
make use of its potential for user awareness around a table,
gaze-at-device interactions, and gaze-at-user interactions.

Interactions through GazeConduits’ User Awareness
The first scenario makes use of the fact that GazeConduits
maintains a map of users’ presence around the table, detecting
who enters and leaves the tracking space where and when.

In this scenario, GazePoker (Fig. 6), each user can only see
their own set of cards. When a player temporarily gets up and
leaves the table, her cards flip to blanks, such that a neighbor-
ing player cannot peek. Only when the player returns does
GazeConduits authenticate her and restore her cards. Similarly,

Figure 6. GazePoker prevents cheating, by continuously authenticating

users in front of their cards based on their faces. When a player leaves

in GazePoker, or another peeks in, those cards are hidden.

when a second player attempts to peek while the first person
is present, GazePoker detects this and temporarily hides the
cards until the second player has left the frame again. This
behavior is enabled by GazeConduits’ continuous tracking
and authentication of surrounding users. Due to the player
detection implemented in GazePoker, the users could even
switch seats or change devices while maintaining privacy, i.e.,
players will always see their cards and their cards only.

Interactions through Gaze-at-Device Tracking
In our second scenario, we leverage the continuous tracking
of people’s gaze across the tablet devices to allow for a differ-
ent gaze&touch interaction technique for cross-device group
collaboration.

This scenario, GazeMirror, suggests a new technique for users
to rapidly mirror the content of any other device onto the
screen of their own tablet directly in front of them. The mir-
roring is triggered when a person performs a four-finger multi-
touch gesture on their own tablet while targeting their gaze at
another tablet device on the table. As long as the person holds
the four-finger touch gesture on their screen, they can now
view and, using their other hand, interact with the mirrored
remote content on their local device. Releasing the touch ends
the mirroring. The technique is designed as a light-weight,
ad-hoc technique for collaborative settings.

This technique also enables users to transfer content from the
remote device to the local device by touching the object that
should be moved while releasing the four-finger mirroring
gesture. When the mirroring ends, the object stays at the
user’s finger and is moved to the local device. GazeMirror
can also be used to mirror the content of the gaze-tracking
smartphone to a tablet. Example applications for this gesture
are content transfer from the user’s smartphone to a private or
public tablet, such as a private message, or accepting a call that
a user received during the cross-device session. Since only the
user who is tracked by the smartphone can select it using gaze,
she is the only one who can mirror content from her phone to
a different device, accounting for privacy concerns.

GazeMirror also facilitates cross-device collaboration. In tra-
ditional setups, each user maintains their own tablet, and col-
laboration oftentimes involves invading each others’ private
space. The form factor of tablets further complicates this col-
laboration, as the limited screen real estate does not allow for
multiple users to comfortably interact with the same device.
GazeMirror addresses this issue by creating a working copy
of one user’s screen on the other user’s device, so both can
work on the same content together. This allows users to work
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on their own device within their own private space, yet to
collaborate in real-time with each other.

Interactions through Gaze-at-Users Detection
GazeConduits maintains the location of each user, and can
also detect if a user is looking at another person. We use this
feature to detect if two users look at each other. This virtual
handshake can trigger actions that both users have agreed upon.
If a user wants to edit the personal content of another user, she
first asks for permission by looking at the content and then at
the owner of the content. If the owner looks back at the user
and performs a particular touch gesture, the owner provides
the user permission to edit the content. This feature can also
be used for synchronized object transfer between two users.

LIMITATIONS AND FUTURE WORK
GazeConduits is primarily designed to allow users to inter-
act with a set of mobile devices using gaze input in an ad-
hoc cross-device setting without the need for gaze calibration.
However, GazeConduits was only evaluated with tablets of
a certain size, and it can only detect that a user is looking at
a tablet, but not at which location on the tablet. To support
smaller devices such as smartphones, or to detect the exact
gaze location on a tablet, gaze tracking accuracy would need
to be improved. This could be achieved by using more so-
phisticated tracking and calibration methods. However, we
also anticipate an increase in gaze tracking accuracy, as it only
recently became a feature in commodity devices, and a more
widespread adoption may lead to increased demand. While
the feature of gaze tracking is only available in the most recent
models of smartphones, a more widespread availability will
allow for more reliable use of GazeConduits due to expected
improvements of the tracking accuracy, with the basic inter-
action technique remaining the same. For example, the face
detection in the iPhone 11 covers a wider area, which allows
GazeConduits to track the users face and gaze in a larger area
in front of the device.

When devices are within easy reach, using touch can be more
useful than gaze interaction. However, in general, using gaze
can resolve situations in which a device is out of reach (the
distance to the furthest tablet could be over 1 m), and even
when within reach, gaze can provide a better solution when
reaching into another user’s personal space to pick up a tablet
would be awkward—and if the other user is actually holding a
tablet, then, rather than grabbing that tablet out of their hands,
GazeConduits will help to select that tablet using the person
as a proxy (see our Study 2).

The maximum table depth is limited by the phone’s tracking
area and resolution, to ensure that users’ faces remain rec-
ognizable. GazeConduits is currently limited to four users
that are sitting at fixed positions. Depending on the available
technology, this can increase to more users in specific scenar-
ios. In some scenarios, these constraints match the actual use
case well. For example, GazePoker entails social constraints
(staying close to your cards), and user positions tend to be
stationary in this scenario.

GazeConduits currently does not support moving tablets on
the table, as it cannot directly track the position of tablets.

While the system can detect when devices are moved, it does
not detect their location, and very slow movements are cur-
rently not detected. Therefore, users have to update positions
manually on the device when prompted. In future work, we
want to explore methods in which users can use their gaze to
specify the location of a tablet, which requires a more accurate
gaze tracking algorithm.

SUMMARY AND CONCLUSION
We presented GazeConduits, a system that uses a combina-
tion of gaze and touch input in a collaborative ad-hoc setting.
The addition of gaze tracking features to commodity devices
such as smartphones has opened up new avenues for research,
which we exploited in our application of GazeConduits. Our
implementation of the gaze tracking system for a collabora-
tive scenario does not require calibration, special hardware, or
time-consuming setup – users can simply sit down at a table,
connect their devices to the GazeConduits system, and start
using a combination of gaze and touch to interact with multi-
ple devices and users seamlessly. Our evaluation shows error
rates of less than 5%, even with up to four users, four phones,
four private tablets, and 20 shared tablets in one scenario com-
bined. Not only can users interact with all these devices, but
GazeConduits can distinguish between different users, which
enables additional new interaction techniques. We highlight
scenarios that arise from those new opportunities, to provide
an outlook of how gaze input can shape the future design of
interactive technologies.
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